Spaces:
Paused
Paused
File size: 11,161 Bytes
78db0f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import os.path
import stat
import functools
from collections import OrderedDict
from modules import shared, scripts, sd_models
from modules.paths import models_path
from scripts.processor import *
from scripts.utils import ndarray_lru_cache
from scripts.logging import logger
from typing import Dict, Callable, Optional, Tuple, List
CN_MODEL_EXTS = [".pt", ".pth", ".ckpt", ".safetensors"]
cn_models_dir = os.path.join(models_path, "ControlNet")
cn_models_dir_old = os.path.join(scripts.basedir(), "models")
cn_models = OrderedDict() # "My_Lora(abcd1234)" -> C:/path/to/model.safetensors
cn_models_names = {} # "my_lora" -> "My_Lora(abcd1234)"
def cache_preprocessors(preprocessor_modules: Dict[str, Callable]) -> Dict[str, Callable]:
""" We want to share the preprocessor results in a single big cache, instead of a small
cache for each preprocessor function. """
CACHE_SIZE = getattr(shared.cmd_opts, "controlnet_preprocessor_cache_size", 0)
# Set CACHE_SIZE = 0 will completely remove the caching layer. This can be
# helpful when debugging preprocessor code.
if CACHE_SIZE == 0:
return preprocessor_modules
logger.debug(f'Create LRU cache (max_size={CACHE_SIZE}) for preprocessor results.')
@ndarray_lru_cache(max_size=CACHE_SIZE)
def unified_preprocessor(preprocessor_name: str, *args, **kwargs):
logger.debug(f'Calling preprocessor {preprocessor_name} outside of cache.')
return preprocessor_modules[preprocessor_name](*args, **kwargs)
# TODO: Introduce a seed parameter for shuffle preprocessor?
uncacheable_preprocessors = ['shuffle']
return {
k: (
v if k in uncacheable_preprocessors
else functools.partial(unified_preprocessor, k)
)
for k, v
in preprocessor_modules.items()
}
cn_preprocessor_modules = {
"none": lambda x, *args, **kwargs: (x, True),
"canny": canny,
"depth": midas,
"depth_leres": functools.partial(leres, boost=False),
"depth_leres++": functools.partial(leres, boost=True),
"hed": hed,
"hed_safe": hed_safe,
"mediapipe_face": mediapipe_face,
"mlsd": mlsd,
"normal_map": midas_normal,
"openpose": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=False),
"openpose_hand": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=False),
"openpose_face": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=False, include_face=True),
"openpose_faceonly": functools.partial(g_openpose_model.run_model, include_body=False, include_hand=False, include_face=True),
"openpose_full": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=True),
"dw_openpose_full": functools.partial(g_openpose_model.run_model, include_body=True, include_hand=True, include_face=True, use_dw_pose=True),
"clip_vision": functools.partial(clip, config='clip_vitl'),
"revision_clipvision": functools.partial(clip, config='clip_g'),
"revision_ignore_prompt": functools.partial(clip, config='clip_g'),
"ip-adapter_clip_sd15": functools.partial(clip, config='clip_h'),
"ip-adapter_clip_sdxl": functools.partial(clip, config='clip_g'),
"color": color,
"pidinet": pidinet,
"pidinet_safe": pidinet_safe,
"pidinet_sketch": pidinet_ts,
"pidinet_scribble": scribble_pidinet,
"scribble_xdog": scribble_xdog,
"scribble_hed": scribble_hed,
"segmentation": uniformer,
"threshold": threshold,
"depth_zoe": zoe_depth,
"normal_bae": normal_bae,
"oneformer_coco": oneformer_coco,
"oneformer_ade20k": oneformer_ade20k,
"lineart": lineart,
"lineart_coarse": lineart_coarse,
"lineart_anime": lineart_anime,
"lineart_standard": lineart_standard,
"shuffle": shuffle,
"tile_resample": tile_resample,
"invert": invert,
"lineart_anime_denoise": lineart_anime_denoise,
"reference_only": identity,
"reference_adain": identity,
"reference_adain+attn": identity,
"inpaint": identity,
"inpaint_only": identity,
"inpaint_only+lama": lama_inpaint,
"tile_colorfix": identity,
"tile_colorfix+sharp": identity,
"recolor_luminance": recolor_luminance,
"recolor_intensity": recolor_intensity,
"blur_gaussian": blur_gaussian,
}
cn_preprocessor_unloadable = {
"hed": unload_hed,
"fake_scribble": unload_hed,
"mlsd": unload_mlsd,
"clip_vision": functools.partial(unload_clip, config='clip_vitl'),
"revision_clipvision": functools.partial(unload_clip, config='clip_g'),
"revision_ignore_prompt": functools.partial(unload_clip, config='clip_g'),
"ip-adapter_clip_sd15": functools.partial(unload_clip, config='clip_h'),
"ip-adapter_clip_sdxl": functools.partial(unload_clip, config='clip_g'),
"depth": unload_midas,
"depth_leres": unload_leres,
"normal_map": unload_midas,
"pidinet": unload_pidinet,
"openpose": g_openpose_model.unload,
"openpose_hand": g_openpose_model.unload,
"openpose_face": g_openpose_model.unload,
"openpose_full": g_openpose_model.unload,
"dw_openpose_full": g_openpose_model.unload,
"segmentation": unload_uniformer,
"depth_zoe": unload_zoe_depth,
"normal_bae": unload_normal_bae,
"oneformer_coco": unload_oneformer_coco,
"oneformer_ade20k": unload_oneformer_ade20k,
"lineart": unload_lineart,
"lineart_coarse": unload_lineart_coarse,
"lineart_anime": unload_lineart_anime,
"lineart_anime_denoise": unload_lineart_anime_denoise,
"inpaint_only+lama": unload_lama_inpaint
}
preprocessor_aliases = {
"invert": "invert (from white bg & black line)",
"lineart_standard": "lineart_standard (from white bg & black line)",
"lineart": "lineart_realistic",
"color": "t2ia_color_grid",
"clip_vision": "t2ia_style_clipvision",
"pidinet_sketch": "t2ia_sketch_pidi",
"depth": "depth_midas",
"normal_map": "normal_midas",
"hed": "softedge_hed",
"hed_safe": "softedge_hedsafe",
"pidinet": "softedge_pidinet",
"pidinet_safe": "softedge_pidisafe",
"segmentation": "seg_ufade20k",
"oneformer_coco": "seg_ofcoco",
"oneformer_ade20k": "seg_ofade20k",
"pidinet_scribble": "scribble_pidinet",
"inpaint": "inpaint_global_harmonious",
}
ui_preprocessor_keys = ['none', preprocessor_aliases['invert']]
ui_preprocessor_keys += sorted([preprocessor_aliases.get(k, k)
for k in cn_preprocessor_modules.keys()
if preprocessor_aliases.get(k, k) not in ui_preprocessor_keys])
reverse_preprocessor_aliases = {preprocessor_aliases[k]: k for k in preprocessor_aliases.keys()}
def get_module_basename(module: Optional[str]) -> str:
if module is None:
module = 'none'
return reverse_preprocessor_aliases.get(module, module)
default_detectedmap_dir = os.path.join("detected_maps")
script_dir = scripts.basedir()
os.makedirs(cn_models_dir, exist_ok=True)
def traverse_all_files(curr_path, model_list):
f_list = [
(os.path.join(curr_path, entry.name), entry.stat())
for entry in os.scandir(curr_path)
if os.path.isdir(curr_path)
]
for f_info in f_list:
fname, fstat = f_info
if os.path.splitext(fname)[1] in CN_MODEL_EXTS:
model_list.append(f_info)
elif stat.S_ISDIR(fstat.st_mode):
model_list = traverse_all_files(fname, model_list)
return model_list
def get_all_models(sort_by, filter_by, path):
res = OrderedDict()
fileinfos = traverse_all_files(path, [])
filter_by = filter_by.strip(" ")
if len(filter_by) != 0:
fileinfos = [x for x in fileinfos if filter_by.lower()
in os.path.basename(x[0]).lower()]
if sort_by == "name":
fileinfos = sorted(fileinfos, key=lambda x: os.path.basename(x[0]))
elif sort_by == "date":
fileinfos = sorted(fileinfos, key=lambda x: -x[1].st_mtime)
elif sort_by == "path name":
fileinfos = sorted(fileinfos)
for finfo in fileinfos:
filename = finfo[0]
name = os.path.splitext(os.path.basename(filename))[0]
# Prevent a hypothetical "None.pt" from being listed.
if name != "None":
res[name + f" [{sd_models.model_hash(filename)}]"] = filename
return res
def update_cn_models():
cn_models.clear()
ext_dirs = (shared.opts.data.get("control_net_models_path", None), getattr(shared.cmd_opts, 'controlnet_dir', None))
extra_lora_paths = (extra_lora_path for extra_lora_path in ext_dirs
if extra_lora_path is not None and os.path.exists(extra_lora_path))
paths = [cn_models_dir, cn_models_dir_old, *extra_lora_paths]
for path in paths:
sort_by = shared.opts.data.get(
"control_net_models_sort_models_by", "name")
filter_by = shared.opts.data.get("control_net_models_name_filter", "")
found = get_all_models(sort_by, filter_by, path)
cn_models.update({**found, **cn_models})
# insert "None" at the beginning of `cn_models` in-place
cn_models_copy = OrderedDict(cn_models)
cn_models.clear()
cn_models.update({**{"None": None}, **cn_models_copy})
cn_models_names.clear()
for name_and_hash, filename in cn_models.items():
if filename is None:
continue
name = os.path.splitext(os.path.basename(filename))[0].lower()
cn_models_names[name] = name_and_hash
def select_control_type(control_type: str) -> Tuple[List[str], List[str], str, str]:
default_option = preprocessor_filters[control_type]
pattern = control_type.lower()
preprocessor_list = ui_preprocessor_keys
model_list = list(cn_models.keys())
if pattern == "all":
return [
preprocessor_list,
model_list,
'none', #default option
"None" #default model
]
filtered_preprocessor_list = [
x
for x in preprocessor_list
if pattern in x.lower() or any(a in x.lower() for a in preprocessor_filters_aliases.get(pattern, [])) or x.lower() == "none"
]
if pattern in ["canny", "lineart", "scribble/sketch", "mlsd"]:
filtered_preprocessor_list += [
x for x in preprocessor_list if "invert" in x.lower()
]
filtered_model_list = [
x for x in model_list if pattern in x.lower() or any(a in x.lower() for a in preprocessor_filters_aliases.get(pattern, [])) or x.lower() == "none"
]
if default_option not in filtered_preprocessor_list:
default_option = filtered_preprocessor_list[0]
if len(filtered_model_list) == 1:
default_model = "None"
filtered_model_list = model_list
else:
default_model = filtered_model_list[1]
for x in filtered_model_list:
if "11" in x.split("[")[0]:
default_model = x
break
return (
filtered_preprocessor_list,
filtered_model_list,
default_option,
default_model
)
|