Spaces:
Paused
Paused
File size: 15,024 Bytes
78db0f1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 |
import os
import os.path as osp
from collections import OrderedDict
from functools import reduce
import annotator.mmpkg.mmcv as mmcv
import numpy as np
from annotator.mmpkg.mmcv.utils import print_log
from torch.utils.data import Dataset
from annotator.mmpkg.mmseg.core import eval_metrics
from annotator.mmpkg.mmseg.utils import get_root_logger
from .builder import DATASETS
from .pipelines import Compose
@DATASETS.register_module()
class CustomDataset(Dataset):
"""Custom dataset for semantic segmentation. An example of file structure
is as followed.
.. code-block:: none
βββ data
β βββ my_dataset
β β βββ img_dir
β β β βββ train
β β β β βββ xxx{img_suffix}
β β β β βββ yyy{img_suffix}
β β β β βββ zzz{img_suffix}
β β β βββ val
β β βββ ann_dir
β β β βββ train
β β β β βββ xxx{seg_map_suffix}
β β β β βββ yyy{seg_map_suffix}
β β β β βββ zzz{seg_map_suffix}
β β β βββ val
The img/gt_semantic_seg pair of CustomDataset should be of the same
except suffix. A valid img/gt_semantic_seg filename pair should be like
``xxx{img_suffix}`` and ``xxx{seg_map_suffix}`` (extension is also included
in the suffix). If split is given, then ``xxx`` is specified in txt file.
Otherwise, all files in ``img_dir/``and ``ann_dir`` will be loaded.
Please refer to ``docs/tutorials/new_dataset.md`` for more details.
Args:
pipeline (list[dict]): Processing pipeline
img_dir (str): Path to image directory
img_suffix (str): Suffix of images. Default: '.jpg'
ann_dir (str, optional): Path to annotation directory. Default: None
seg_map_suffix (str): Suffix of segmentation maps. Default: '.png'
split (str, optional): Split txt file. If split is specified, only
file with suffix in the splits will be loaded. Otherwise, all
images in img_dir/ann_dir will be loaded. Default: None
data_root (str, optional): Data root for img_dir/ann_dir. Default:
None.
test_mode (bool): If test_mode=True, gt wouldn't be loaded.
ignore_index (int): The label index to be ignored. Default: 255
reduce_zero_label (bool): Whether to mark label zero as ignored.
Default: False
classes (str | Sequence[str], optional): Specify classes to load.
If is None, ``cls.CLASSES`` will be used. Default: None.
palette (Sequence[Sequence[int]]] | np.ndarray | None):
The palette of segmentation map. If None is given, and
self.PALETTE is None, random palette will be generated.
Default: None
"""
CLASSES = None
PALETTE = None
def __init__(self,
pipeline,
img_dir,
img_suffix='.jpg',
ann_dir=None,
seg_map_suffix='.png',
split=None,
data_root=None,
test_mode=False,
ignore_index=255,
reduce_zero_label=False,
classes=None,
palette=None):
self.pipeline = Compose(pipeline)
self.img_dir = img_dir
self.img_suffix = img_suffix
self.ann_dir = ann_dir
self.seg_map_suffix = seg_map_suffix
self.split = split
self.data_root = data_root
self.test_mode = test_mode
self.ignore_index = ignore_index
self.reduce_zero_label = reduce_zero_label
self.label_map = None
self.CLASSES, self.PALETTE = self.get_classes_and_palette(
classes, palette)
# join paths if data_root is specified
if self.data_root is not None:
if not osp.isabs(self.img_dir):
self.img_dir = osp.join(self.data_root, self.img_dir)
if not (self.ann_dir is None or osp.isabs(self.ann_dir)):
self.ann_dir = osp.join(self.data_root, self.ann_dir)
if not (self.split is None or osp.isabs(self.split)):
self.split = osp.join(self.data_root, self.split)
# load annotations
self.img_infos = self.load_annotations(self.img_dir, self.img_suffix,
self.ann_dir,
self.seg_map_suffix, self.split)
def __len__(self):
"""Total number of samples of data."""
return len(self.img_infos)
def load_annotations(self, img_dir, img_suffix, ann_dir, seg_map_suffix,
split):
"""Load annotation from directory.
Args:
img_dir (str): Path to image directory
img_suffix (str): Suffix of images.
ann_dir (str|None): Path to annotation directory.
seg_map_suffix (str|None): Suffix of segmentation maps.
split (str|None): Split txt file. If split is specified, only file
with suffix in the splits will be loaded. Otherwise, all images
in img_dir/ann_dir will be loaded. Default: None
Returns:
list[dict]: All image info of dataset.
"""
img_infos = []
if split is not None:
with open(split) as f:
for line in f:
img_name = line.strip()
img_info = dict(filename=img_name + img_suffix)
if ann_dir is not None:
seg_map = img_name + seg_map_suffix
img_info['ann'] = dict(seg_map=seg_map)
img_infos.append(img_info)
else:
for img in mmcv.scandir(img_dir, img_suffix, recursive=True):
img_info = dict(filename=img)
if ann_dir is not None:
seg_map = img.replace(img_suffix, seg_map_suffix)
img_info['ann'] = dict(seg_map=seg_map)
img_infos.append(img_info)
print_log(f'Loaded {len(img_infos)} images', logger=get_root_logger())
return img_infos
def get_ann_info(self, idx):
"""Get annotation by index.
Args:
idx (int): Index of data.
Returns:
dict: Annotation info of specified index.
"""
return self.img_infos[idx]['ann']
def pre_pipeline(self, results):
"""Prepare results dict for pipeline."""
results['seg_fields'] = []
results['img_prefix'] = self.img_dir
results['seg_prefix'] = self.ann_dir
if self.custom_classes:
results['label_map'] = self.label_map
def __getitem__(self, idx):
"""Get training/test data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Training/test data (with annotation if `test_mode` is set
False).
"""
if self.test_mode:
return self.prepare_test_img(idx)
else:
return self.prepare_train_img(idx)
def prepare_train_img(self, idx):
"""Get training data and annotations after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Training data and annotation after pipeline with new keys
introduced by pipeline.
"""
img_info = self.img_infos[idx]
ann_info = self.get_ann_info(idx)
results = dict(img_info=img_info, ann_info=ann_info)
self.pre_pipeline(results)
return self.pipeline(results)
def prepare_test_img(self, idx):
"""Get testing data after pipeline.
Args:
idx (int): Index of data.
Returns:
dict: Testing data after pipeline with new keys introduced by
pipeline.
"""
img_info = self.img_infos[idx]
results = dict(img_info=img_info)
self.pre_pipeline(results)
return self.pipeline(results)
def format_results(self, results, **kwargs):
"""Place holder to format result to dataset specific output."""
def get_gt_seg_maps(self, efficient_test=False):
"""Get ground truth segmentation maps for evaluation."""
gt_seg_maps = []
for img_info in self.img_infos:
seg_map = osp.join(self.ann_dir, img_info['ann']['seg_map'])
if efficient_test:
gt_seg_map = seg_map
else:
gt_seg_map = mmcv.imread(
seg_map, flag='unchanged', backend='pillow')
gt_seg_maps.append(gt_seg_map)
return gt_seg_maps
def get_classes_and_palette(self, classes=None, palette=None):
"""Get class names of current dataset.
Args:
classes (Sequence[str] | str | None): If classes is None, use
default CLASSES defined by builtin dataset. If classes is a
string, take it as a file name. The file contains the name of
classes where each line contains one class name. If classes is
a tuple or list, override the CLASSES defined by the dataset.
palette (Sequence[Sequence[int]]] | np.ndarray | None):
The palette of segmentation map. If None is given, random
palette will be generated. Default: None
"""
if classes is None:
self.custom_classes = False
return self.CLASSES, self.PALETTE
self.custom_classes = True
if isinstance(classes, str):
# take it as a file path
class_names = mmcv.list_from_file(classes)
elif isinstance(classes, (tuple, list)):
class_names = classes
else:
raise ValueError(f'Unsupported type {type(classes)} of classes.')
if self.CLASSES:
if not set(classes).issubset(self.CLASSES):
raise ValueError('classes is not a subset of CLASSES.')
# dictionary, its keys are the old label ids and its values
# are the new label ids.
# used for changing pixel labels in load_annotations.
self.label_map = {}
for i, c in enumerate(self.CLASSES):
if c not in class_names:
self.label_map[i] = -1
else:
self.label_map[i] = classes.index(c)
palette = self.get_palette_for_custom_classes(class_names, palette)
return class_names, palette
def get_palette_for_custom_classes(self, class_names, palette=None):
if self.label_map is not None:
# return subset of palette
palette = []
for old_id, new_id in sorted(
self.label_map.items(), key=lambda x: x[1]):
if new_id != -1:
palette.append(self.PALETTE[old_id])
palette = type(self.PALETTE)(palette)
elif palette is None:
if self.PALETTE is None:
palette = np.random.randint(0, 255, size=(len(class_names), 3))
else:
palette = self.PALETTE
return palette
def evaluate(self,
results,
metric='mIoU',
logger=None,
efficient_test=False,
**kwargs):
"""Evaluate the dataset.
Args:
results (list): Testing results of the dataset.
metric (str | list[str]): Metrics to be evaluated. 'mIoU',
'mDice' and 'mFscore' are supported.
logger (logging.Logger | None | str): Logger used for printing
related information during evaluation. Default: None.
Returns:
dict[str, float]: Default metrics.
"""
if isinstance(metric, str):
metric = [metric]
allowed_metrics = ['mIoU', 'mDice', 'mFscore']
if not set(metric).issubset(set(allowed_metrics)):
raise KeyError('metric {} is not supported'.format(metric))
eval_results = {}
gt_seg_maps = self.get_gt_seg_maps(efficient_test)
if self.CLASSES is None:
num_classes = len(
reduce(np.union1d, [np.unique(_) for _ in gt_seg_maps]))
else:
num_classes = len(self.CLASSES)
ret_metrics = eval_metrics(
results,
gt_seg_maps,
num_classes,
self.ignore_index,
metric,
label_map=self.label_map,
reduce_zero_label=self.reduce_zero_label)
if self.CLASSES is None:
class_names = tuple(range(num_classes))
else:
class_names = self.CLASSES
# summary table
ret_metrics_summary = OrderedDict({
ret_metric: np.round(np.nanmean(ret_metric_value) * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
})
# each class table
ret_metrics.pop('aAcc', None)
ret_metrics_class = OrderedDict({
ret_metric: np.round(ret_metric_value * 100, 2)
for ret_metric, ret_metric_value in ret_metrics.items()
})
ret_metrics_class.update({'Class': class_names})
ret_metrics_class.move_to_end('Class', last=False)
try:
from prettytable import PrettyTable
# for logger
class_table_data = PrettyTable()
for key, val in ret_metrics_class.items():
class_table_data.add_column(key, val)
summary_table_data = PrettyTable()
for key, val in ret_metrics_summary.items():
if key == 'aAcc':
summary_table_data.add_column(key, [val])
else:
summary_table_data.add_column('m' + key, [val])
print_log('per class results:', logger)
print_log('\n' + class_table_data.get_string(), logger=logger)
print_log('Summary:', logger)
print_log('\n' + summary_table_data.get_string(), logger=logger)
except ImportError: # prettytable is not installed
pass
# each metric dict
for key, value in ret_metrics_summary.items():
if key == 'aAcc':
eval_results[key] = value / 100.0
else:
eval_results['m' + key] = value / 100.0
ret_metrics_class.pop('Class', None)
for key, value in ret_metrics_class.items():
eval_results.update({
key + '.' + str(name): value[idx] / 100.0
for idx, name in enumerate(class_names)
})
if mmcv.is_list_of(results, str):
for file_name in results:
os.remove(file_name)
return eval_results
|