File size: 5,935 Bytes
78db0f1
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import copy
import platform
import random
from functools import partial

import numpy as np
from annotator.mmpkg.mmcv.parallel import collate
from annotator.mmpkg.mmcv.runner import get_dist_info
from annotator.mmpkg.mmcv.utils import Registry, build_from_cfg
from annotator.mmpkg.mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader
from torch.utils.data import DistributedSampler

if platform.system() != 'Windows':
    # https://github.com/pytorch/pytorch/issues/973
    import resource
    rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
    hard_limit = rlimit[1]
    soft_limit = min(4096, hard_limit)
    resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))

DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')


def _concat_dataset(cfg, default_args=None):
    """Build :obj:`ConcatDataset by."""
    from .dataset_wrappers import ConcatDataset
    img_dir = cfg['img_dir']
    ann_dir = cfg.get('ann_dir', None)
    split = cfg.get('split', None)
    num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1
    if ann_dir is not None:
        num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1
    else:
        num_ann_dir = 0
    if split is not None:
        num_split = len(split) if isinstance(split, (list, tuple)) else 1
    else:
        num_split = 0
    if num_img_dir > 1:
        assert num_img_dir == num_ann_dir or num_ann_dir == 0
        assert num_img_dir == num_split or num_split == 0
    else:
        assert num_split == num_ann_dir or num_ann_dir <= 1
    num_dset = max(num_split, num_img_dir)

    datasets = []
    for i in range(num_dset):
        data_cfg = copy.deepcopy(cfg)
        if isinstance(img_dir, (list, tuple)):
            data_cfg['img_dir'] = img_dir[i]
        if isinstance(ann_dir, (list, tuple)):
            data_cfg['ann_dir'] = ann_dir[i]
        if isinstance(split, (list, tuple)):
            data_cfg['split'] = split[i]
        datasets.append(build_dataset(data_cfg, default_args))

    return ConcatDataset(datasets)


def build_dataset(cfg, default_args=None):
    """Build datasets."""
    from .dataset_wrappers import ConcatDataset, RepeatDataset
    if isinstance(cfg, (list, tuple)):
        dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
    elif cfg['type'] == 'RepeatDataset':
        dataset = RepeatDataset(
            build_dataset(cfg['dataset'], default_args), cfg['times'])
    elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance(
            cfg.get('split', None), (list, tuple)):
        dataset = _concat_dataset(cfg, default_args)
    else:
        dataset = build_from_cfg(cfg, DATASETS, default_args)

    return dataset


def build_dataloader(dataset,
                     samples_per_gpu,
                     workers_per_gpu,
                     num_gpus=1,
                     dist=True,
                     shuffle=True,
                     seed=None,
                     drop_last=False,
                     pin_memory=True,
                     dataloader_type='PoolDataLoader',
                     **kwargs):
    """Build PyTorch DataLoader.

    In distributed training, each GPU/process has a dataloader.
    In non-distributed training, there is only one dataloader for all GPUs.

    Args:
        dataset (Dataset): A PyTorch dataset.
        samples_per_gpu (int): Number of training samples on each GPU, i.e.,
            batch size of each GPU.
        workers_per_gpu (int): How many subprocesses to use for data loading
            for each GPU.
        num_gpus (int): Number of GPUs. Only used in non-distributed training.
        dist (bool): Distributed training/test or not. Default: True.
        shuffle (bool): Whether to shuffle the data at every epoch.
            Default: True.
        seed (int | None): Seed to be used. Default: None.
        drop_last (bool): Whether to drop the last incomplete batch in epoch.
            Default: False
        pin_memory (bool): Whether to use pin_memory in DataLoader.
            Default: True
        dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader'
        kwargs: any keyword argument to be used to initialize DataLoader

    Returns:
        DataLoader: A PyTorch dataloader.
    """
    rank, world_size = get_dist_info()
    if dist:
        sampler = DistributedSampler(
            dataset, world_size, rank, shuffle=shuffle)
        shuffle = False
        batch_size = samples_per_gpu
        num_workers = workers_per_gpu
    else:
        sampler = None
        batch_size = num_gpus * samples_per_gpu
        num_workers = num_gpus * workers_per_gpu

    init_fn = partial(
        worker_init_fn, num_workers=num_workers, rank=rank,
        seed=seed) if seed is not None else None

    assert dataloader_type in (
        'DataLoader',
        'PoolDataLoader'), f'unsupported dataloader {dataloader_type}'

    if dataloader_type == 'PoolDataLoader':
        dataloader = PoolDataLoader
    elif dataloader_type == 'DataLoader':
        dataloader = DataLoader

    data_loader = dataloader(
        dataset,
        batch_size=batch_size,
        sampler=sampler,
        num_workers=num_workers,
        collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
        pin_memory=pin_memory,
        shuffle=shuffle,
        worker_init_fn=init_fn,
        drop_last=drop_last,
        **kwargs)

    return data_loader


def worker_init_fn(worker_id, num_workers, rank, seed):
    """Worker init func for dataloader.

    The seed of each worker equals to num_worker * rank + worker_id + user_seed

    Args:
        worker_id (int): Worker id.
        num_workers (int): Number of workers.
        rank (int): The rank of current process.
        seed (int): The random seed to use.
    """

    worker_seed = num_workers * rank + worker_id + seed
    np.random.seed(worker_seed)
    random.seed(worker_seed)