File size: 36,350 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
import base64
import io
import os
import time
import datetime
import uvicorn
import ipaddress
import requests
import gradio as gr
from threading import Lock
from io import BytesIO
from fastapi import APIRouter, Depends, FastAPI, Request, Response
from fastapi.security import HTTPBasic, HTTPBasicCredentials
from fastapi.exceptions import HTTPException
from fastapi.responses import JSONResponse
from fastapi.encoders import jsonable_encoder
from secrets import compare_digest

import modules.shared as shared
from modules import sd_samplers, deepbooru, sd_hijack, images, scripts, ui, postprocessing, errors, restart, shared_items
from modules.api import models
from modules.shared import opts
from modules.processing import StableDiffusionProcessingTxt2Img, StableDiffusionProcessingImg2Img, process_images
from modules.textual_inversion.textual_inversion import create_embedding, train_embedding
from modules.textual_inversion.preprocess import preprocess
from modules.hypernetworks.hypernetwork import create_hypernetwork, train_hypernetwork
from PIL import PngImagePlugin,Image
from modules.sd_models import unload_model_weights, reload_model_weights, checkpoint_aliases
from modules.sd_models_config import find_checkpoint_config_near_filename
from modules.realesrgan_model import get_realesrgan_models
from modules import devices
from typing import Dict, List, Any
import piexif
import piexif.helper
from contextlib import closing


def script_name_to_index(name, scripts):
    try:
        return [script.title().lower() for script in scripts].index(name.lower())
    except Exception as e:
        raise HTTPException(status_code=422, detail=f"Script '{name}' not found") from e


def validate_sampler_name(name):
    config = sd_samplers.all_samplers_map.get(name, None)
    if config is None:
        raise HTTPException(status_code=404, detail="Sampler not found")

    return name


def setUpscalers(req: dict):
    reqDict = vars(req)
    reqDict['extras_upscaler_1'] = reqDict.pop('upscaler_1', None)
    reqDict['extras_upscaler_2'] = reqDict.pop('upscaler_2', None)
    return reqDict


def verify_url(url):
    """Returns True if the url refers to a global resource."""

    import socket
    from urllib.parse import urlparse
    try:
        parsed_url = urlparse(url)
        domain_name = parsed_url.netloc
        host = socket.gethostbyname_ex(domain_name)
        for ip in host[2]:
            ip_addr = ipaddress.ip_address(ip)
            if not ip_addr.is_global:
                return False
    except Exception:
        return False

    return True


def decode_base64_to_image(encoding):
    if encoding.startswith("http://") or encoding.startswith("https://"):
        if not opts.api_enable_requests:
            raise HTTPException(status_code=500, detail="Requests not allowed")

        if opts.api_forbid_local_requests and not verify_url(encoding):
            raise HTTPException(status_code=500, detail="Request to local resource not allowed")

        headers = {'user-agent': opts.api_useragent} if opts.api_useragent else {}
        response = requests.get(encoding, timeout=30, headers=headers)
        try:
            image = Image.open(BytesIO(response.content))
            return image
        except Exception as e:
            raise HTTPException(status_code=500, detail="Invalid image url") from e

    if encoding.startswith("data:image/"):
        encoding = encoding.split(";")[1].split(",")[1]
    try:
        image = Image.open(BytesIO(base64.b64decode(encoding)))
        return image
    except Exception as e:
        raise HTTPException(status_code=500, detail="Invalid encoded image") from e


def encode_pil_to_base64(image):
    with io.BytesIO() as output_bytes:

        if opts.samples_format.lower() == 'png':
            use_metadata = False
            metadata = PngImagePlugin.PngInfo()
            for key, value in image.info.items():
                if isinstance(key, str) and isinstance(value, str):
                    metadata.add_text(key, value)
                    use_metadata = True
            image.save(output_bytes, format="PNG", pnginfo=(metadata if use_metadata else None), quality=opts.jpeg_quality)

        elif opts.samples_format.lower() in ("jpg", "jpeg", "webp"):
            if image.mode == "RGBA":
                image = image.convert("RGB")
            parameters = image.info.get('parameters', None)
            exif_bytes = piexif.dump({
                "Exif": { piexif.ExifIFD.UserComment: piexif.helper.UserComment.dump(parameters or "", encoding="unicode") }
            })
            if opts.samples_format.lower() in ("jpg", "jpeg"):
                image.save(output_bytes, format="JPEG", exif = exif_bytes, quality=opts.jpeg_quality)
            else:
                image.save(output_bytes, format="WEBP", exif = exif_bytes, quality=opts.jpeg_quality)

        else:
            raise HTTPException(status_code=500, detail="Invalid image format")

        bytes_data = output_bytes.getvalue()

    return base64.b64encode(bytes_data)


def api_middleware(app: FastAPI):
    rich_available = False
    try:
        if os.environ.get('WEBUI_RICH_EXCEPTIONS', None) is not None:
            import anyio  # importing just so it can be placed on silent list
            import starlette  # importing just so it can be placed on silent list
            from rich.console import Console
            console = Console()
            rich_available = True
    except Exception:
        pass

    @app.middleware("http")
    async def log_and_time(req: Request, call_next):
        ts = time.time()
        res: Response = await call_next(req)
        duration = str(round(time.time() - ts, 4))
        res.headers["X-Process-Time"] = duration
        endpoint = req.scope.get('path', 'err')
        if shared.cmd_opts.api_log and endpoint.startswith('/sdapi'):
            print('API {t} {code} {prot}/{ver} {method} {endpoint} {cli} {duration}'.format(
                t=datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S.%f"),
                code=res.status_code,
                ver=req.scope.get('http_version', '0.0'),
                cli=req.scope.get('client', ('0:0.0.0', 0))[0],
                prot=req.scope.get('scheme', 'err'),
                method=req.scope.get('method', 'err'),
                endpoint=endpoint,
                duration=duration,
            ))
        return res

    def handle_exception(request: Request, e: Exception):
        err = {
            "error": type(e).__name__,
            "detail": vars(e).get('detail', ''),
            "body": vars(e).get('body', ''),
            "errors": str(e),
        }
        if not isinstance(e, HTTPException):  # do not print backtrace on known httpexceptions
            message = f"API error: {request.method}: {request.url} {err}"
            if rich_available:
                print(message)
                console.print_exception(show_locals=True, max_frames=2, extra_lines=1, suppress=[anyio, starlette], word_wrap=False, width=min([console.width, 200]))
            else:
                errors.report(message, exc_info=True)
        return JSONResponse(status_code=vars(e).get('status_code', 500), content=jsonable_encoder(err))

    @app.middleware("http")
    async def exception_handling(request: Request, call_next):
        try:
            return await call_next(request)
        except Exception as e:
            return handle_exception(request, e)

    @app.exception_handler(Exception)
    async def fastapi_exception_handler(request: Request, e: Exception):
        return handle_exception(request, e)

    @app.exception_handler(HTTPException)
    async def http_exception_handler(request: Request, e: HTTPException):
        return handle_exception(request, e)


class Api:
    def __init__(self, app: FastAPI, queue_lock: Lock):
        if shared.cmd_opts.api_auth:
            self.credentials = {}
            for auth in shared.cmd_opts.api_auth.split(","):
                user, password = auth.split(":")
                self.credentials[user] = password

        self.router = APIRouter()
        self.app = app
        self.queue_lock = queue_lock
        api_middleware(self.app)
        self.add_api_route("/sdapi/v1/txt2img", self.text2imgapi, methods=["POST"], response_model=models.TextToImageResponse)
        self.add_api_route("/sdapi/v1/img2img", self.img2imgapi, methods=["POST"], response_model=models.ImageToImageResponse)
        self.add_api_route("/sdapi/v1/extra-single-image", self.extras_single_image_api, methods=["POST"], response_model=models.ExtrasSingleImageResponse)
        self.add_api_route("/sdapi/v1/extra-batch-images", self.extras_batch_images_api, methods=["POST"], response_model=models.ExtrasBatchImagesResponse)
        self.add_api_route("/sdapi/v1/png-info", self.pnginfoapi, methods=["POST"], response_model=models.PNGInfoResponse)
        self.add_api_route("/sdapi/v1/progress", self.progressapi, methods=["GET"], response_model=models.ProgressResponse)
        self.add_api_route("/sdapi/v1/interrogate", self.interrogateapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/interrupt", self.interruptapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/skip", self.skip, methods=["POST"])
        self.add_api_route("/sdapi/v1/options", self.get_config, methods=["GET"], response_model=models.OptionsModel)
        self.add_api_route("/sdapi/v1/options", self.set_config, methods=["POST"])
        self.add_api_route("/sdapi/v1/cmd-flags", self.get_cmd_flags, methods=["GET"], response_model=models.FlagsModel)
        self.add_api_route("/sdapi/v1/samplers", self.get_samplers, methods=["GET"], response_model=List[models.SamplerItem])
        self.add_api_route("/sdapi/v1/upscalers", self.get_upscalers, methods=["GET"], response_model=List[models.UpscalerItem])
        self.add_api_route("/sdapi/v1/latent-upscale-modes", self.get_latent_upscale_modes, methods=["GET"], response_model=List[models.LatentUpscalerModeItem])
        self.add_api_route("/sdapi/v1/sd-models", self.get_sd_models, methods=["GET"], response_model=List[models.SDModelItem])
        self.add_api_route("/sdapi/v1/sd-vae", self.get_sd_vaes, methods=["GET"], response_model=List[models.SDVaeItem])
        self.add_api_route("/sdapi/v1/hypernetworks", self.get_hypernetworks, methods=["GET"], response_model=List[models.HypernetworkItem])
        self.add_api_route("/sdapi/v1/face-restorers", self.get_face_restorers, methods=["GET"], response_model=List[models.FaceRestorerItem])
        self.add_api_route("/sdapi/v1/realesrgan-models", self.get_realesrgan_models, methods=["GET"], response_model=List[models.RealesrganItem])
        self.add_api_route("/sdapi/v1/prompt-styles", self.get_prompt_styles, methods=["GET"], response_model=List[models.PromptStyleItem])
        self.add_api_route("/sdapi/v1/embeddings", self.get_embeddings, methods=["GET"], response_model=models.EmbeddingsResponse)
        self.add_api_route("/sdapi/v1/refresh-checkpoints", self.refresh_checkpoints, methods=["POST"])
        self.add_api_route("/sdapi/v1/refresh-vae", self.refresh_vae, methods=["POST"])
        self.add_api_route("/sdapi/v1/create/embedding", self.create_embedding, methods=["POST"], response_model=models.CreateResponse)
        self.add_api_route("/sdapi/v1/create/hypernetwork", self.create_hypernetwork, methods=["POST"], response_model=models.CreateResponse)
        self.add_api_route("/sdapi/v1/preprocess", self.preprocess, methods=["POST"], response_model=models.PreprocessResponse)
        self.add_api_route("/sdapi/v1/train/embedding", self.train_embedding, methods=["POST"], response_model=models.TrainResponse)
        self.add_api_route("/sdapi/v1/train/hypernetwork", self.train_hypernetwork, methods=["POST"], response_model=models.TrainResponse)
        self.add_api_route("/sdapi/v1/memory", self.get_memory, methods=["GET"], response_model=models.MemoryResponse)
        self.add_api_route("/sdapi/v1/unload-checkpoint", self.unloadapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/reload-checkpoint", self.reloadapi, methods=["POST"])
        self.add_api_route("/sdapi/v1/scripts", self.get_scripts_list, methods=["GET"], response_model=models.ScriptsList)
        self.add_api_route("/sdapi/v1/script-info", self.get_script_info, methods=["GET"], response_model=List[models.ScriptInfo])

        if shared.cmd_opts.api_server_stop:
            self.add_api_route("/sdapi/v1/server-kill", self.kill_webui, methods=["POST"])
            self.add_api_route("/sdapi/v1/server-restart", self.restart_webui, methods=["POST"])
            self.add_api_route("/sdapi/v1/server-stop", self.stop_webui, methods=["POST"])

        self.default_script_arg_txt2img = []
        self.default_script_arg_img2img = []

    def add_api_route(self, path: str, endpoint, **kwargs):
        if shared.cmd_opts.api_auth:
            return self.app.add_api_route(path, endpoint, dependencies=[Depends(self.auth)], **kwargs)
        return self.app.add_api_route(path, endpoint, **kwargs)

    def auth(self, credentials: HTTPBasicCredentials = Depends(HTTPBasic())):
        if credentials.username in self.credentials:
            if compare_digest(credentials.password, self.credentials[credentials.username]):
                return True

        raise HTTPException(status_code=401, detail="Incorrect username or password", headers={"WWW-Authenticate": "Basic"})

    def get_selectable_script(self, script_name, script_runner):
        if script_name is None or script_name == "":
            return None, None

        script_idx = script_name_to_index(script_name, script_runner.selectable_scripts)
        script = script_runner.selectable_scripts[script_idx]
        return script, script_idx

    def get_scripts_list(self):
        t2ilist = [script.name for script in scripts.scripts_txt2img.scripts if script.name is not None]
        i2ilist = [script.name for script in scripts.scripts_img2img.scripts if script.name is not None]

        return models.ScriptsList(txt2img=t2ilist, img2img=i2ilist)

    def get_script_info(self):
        res = []

        for script_list in [scripts.scripts_txt2img.scripts, scripts.scripts_img2img.scripts]:
            res += [script.api_info for script in script_list if script.api_info is not None]

        return res

    def get_script(self, script_name, script_runner):
        if script_name is None or script_name == "":
            return None, None

        script_idx = script_name_to_index(script_name, script_runner.scripts)
        return script_runner.scripts[script_idx]

    def init_default_script_args(self, script_runner):
        #find max idx from the scripts in runner and generate a none array to init script_args
        last_arg_index = 1
        for script in script_runner.scripts:
            if last_arg_index < script.args_to:
                last_arg_index = script.args_to
        # None everywhere except position 0 to initialize script args
        script_args = [None]*last_arg_index
        script_args[0] = 0

        # get default values
        with gr.Blocks(): # will throw errors calling ui function without this
            for script in script_runner.scripts:
                if script.ui(script.is_img2img):
                    ui_default_values = []
                    for elem in script.ui(script.is_img2img):
                        ui_default_values.append(elem.value)
                    script_args[script.args_from:script.args_to] = ui_default_values
        return script_args

    def init_script_args(self, request, default_script_args, selectable_scripts, selectable_idx, script_runner):
        script_args = default_script_args.copy()
        # position 0 in script_arg is the idx+1 of the selectable script that is going to be run when using scripts.scripts_*2img.run()
        if selectable_scripts:
            script_args[selectable_scripts.args_from:selectable_scripts.args_to] = request.script_args
            script_args[0] = selectable_idx + 1

        # Now check for always on scripts
        if request.alwayson_scripts:
            for alwayson_script_name in request.alwayson_scripts.keys():
                alwayson_script = self.get_script(alwayson_script_name, script_runner)
                if alwayson_script is None:
                    raise HTTPException(status_code=422, detail=f"always on script {alwayson_script_name} not found")
                # Selectable script in always on script param check
                if alwayson_script.alwayson is False:
                    raise HTTPException(status_code=422, detail="Cannot have a selectable script in the always on scripts params")
                # always on script with no arg should always run so you don't really need to add them to the requests
                if "args" in request.alwayson_scripts[alwayson_script_name]:
                    # min between arg length in scriptrunner and arg length in the request
                    for idx in range(0, min((alwayson_script.args_to - alwayson_script.args_from), len(request.alwayson_scripts[alwayson_script_name]["args"]))):
                        script_args[alwayson_script.args_from + idx] = request.alwayson_scripts[alwayson_script_name]["args"][idx]
        return script_args

    def text2imgapi(self, txt2imgreq: models.StableDiffusionTxt2ImgProcessingAPI):
        script_runner = scripts.scripts_txt2img
        if not script_runner.scripts:
            script_runner.initialize_scripts(False)
            ui.create_ui()
        if not self.default_script_arg_txt2img:
            self.default_script_arg_txt2img = self.init_default_script_args(script_runner)
        selectable_scripts, selectable_script_idx = self.get_selectable_script(txt2imgreq.script_name, script_runner)

        populate = txt2imgreq.copy(update={  # Override __init__ params
            "sampler_name": validate_sampler_name(txt2imgreq.sampler_name or txt2imgreq.sampler_index),
            "do_not_save_samples": not txt2imgreq.save_images,
            "do_not_save_grid": not txt2imgreq.save_images,
        })
        if populate.sampler_name:
            populate.sampler_index = None  # prevent a warning later on

        args = vars(populate)
        args.pop('script_name', None)
        args.pop('script_args', None) # will refeed them to the pipeline directly after initializing them
        args.pop('alwayson_scripts', None)

        script_args = self.init_script_args(txt2imgreq, self.default_script_arg_txt2img, selectable_scripts, selectable_script_idx, script_runner)

        send_images = args.pop('send_images', True)
        args.pop('save_images', None)

        with self.queue_lock:
            with closing(StableDiffusionProcessingTxt2Img(sd_model=shared.sd_model, **args)) as p:
                p.is_api = True
                p.scripts = script_runner
                p.outpath_grids = opts.outdir_txt2img_grids
                p.outpath_samples = opts.outdir_txt2img_samples

                try:
                    shared.state.begin(job="scripts_txt2img")
                    if selectable_scripts is not None:
                        p.script_args = script_args
                        processed = scripts.scripts_txt2img.run(p, *p.script_args) # Need to pass args as list here
                    else:
                        p.script_args = tuple(script_args) # Need to pass args as tuple here
                        processed = process_images(p)
                finally:
                    shared.state.end()
                    shared.total_tqdm.clear()

        b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []

        return models.TextToImageResponse(images=b64images, parameters=vars(txt2imgreq), info=processed.js())

    def img2imgapi(self, img2imgreq: models.StableDiffusionImg2ImgProcessingAPI):
        init_images = img2imgreq.init_images
        if init_images is None:
            raise HTTPException(status_code=404, detail="Init image not found")

        mask = img2imgreq.mask
        if mask:
            mask = decode_base64_to_image(mask)

        script_runner = scripts.scripts_img2img
        if not script_runner.scripts:
            script_runner.initialize_scripts(True)
            ui.create_ui()
        if not self.default_script_arg_img2img:
            self.default_script_arg_img2img = self.init_default_script_args(script_runner)
        selectable_scripts, selectable_script_idx = self.get_selectable_script(img2imgreq.script_name, script_runner)

        populate = img2imgreq.copy(update={  # Override __init__ params
            "sampler_name": validate_sampler_name(img2imgreq.sampler_name or img2imgreq.sampler_index),
            "do_not_save_samples": not img2imgreq.save_images,
            "do_not_save_grid": not img2imgreq.save_images,
            "mask": mask,
        })
        if populate.sampler_name:
            populate.sampler_index = None  # prevent a warning later on

        args = vars(populate)
        args.pop('include_init_images', None)  # this is meant to be done by "exclude": True in model, but it's for a reason that I cannot determine.
        args.pop('script_name', None)
        args.pop('script_args', None)  # will refeed them to the pipeline directly after initializing them
        args.pop('alwayson_scripts', None)

        script_args = self.init_script_args(img2imgreq, self.default_script_arg_img2img, selectable_scripts, selectable_script_idx, script_runner)

        send_images = args.pop('send_images', True)
        args.pop('save_images', None)

        with self.queue_lock:
            with closing(StableDiffusionProcessingImg2Img(sd_model=shared.sd_model, **args)) as p:
                p.init_images = [decode_base64_to_image(x) for x in init_images]
                p.is_api = True
                p.scripts = script_runner
                p.outpath_grids = opts.outdir_img2img_grids
                p.outpath_samples = opts.outdir_img2img_samples

                try:
                    shared.state.begin(job="scripts_img2img")
                    if selectable_scripts is not None:
                        p.script_args = script_args
                        processed = scripts.scripts_img2img.run(p, *p.script_args) # Need to pass args as list here
                    else:
                        p.script_args = tuple(script_args) # Need to pass args as tuple here
                        processed = process_images(p)
                finally:
                    shared.state.end()
                    shared.total_tqdm.clear()

        b64images = list(map(encode_pil_to_base64, processed.images)) if send_images else []

        if not img2imgreq.include_init_images:
            img2imgreq.init_images = None
            img2imgreq.mask = None

        return models.ImageToImageResponse(images=b64images, parameters=vars(img2imgreq), info=processed.js())

    def extras_single_image_api(self, req: models.ExtrasSingleImageRequest):
        reqDict = setUpscalers(req)

        reqDict['image'] = decode_base64_to_image(reqDict['image'])

        with self.queue_lock:
            result = postprocessing.run_extras(extras_mode=0, image_folder="", input_dir="", output_dir="", save_output=False, **reqDict)

        return models.ExtrasSingleImageResponse(image=encode_pil_to_base64(result[0][0]), html_info=result[1])

    def extras_batch_images_api(self, req: models.ExtrasBatchImagesRequest):
        reqDict = setUpscalers(req)

        image_list = reqDict.pop('imageList', [])
        image_folder = [decode_base64_to_image(x.data) for x in image_list]

        with self.queue_lock:
            result = postprocessing.run_extras(extras_mode=1, image_folder=image_folder, image="", input_dir="", output_dir="", save_output=False, **reqDict)

        return models.ExtrasBatchImagesResponse(images=list(map(encode_pil_to_base64, result[0])), html_info=result[1])

    def pnginfoapi(self, req: models.PNGInfoRequest):
        if(not req.image.strip()):
            return models.PNGInfoResponse(info="")

        image = decode_base64_to_image(req.image.strip())
        if image is None:
            return models.PNGInfoResponse(info="")

        geninfo, items = images.read_info_from_image(image)
        if geninfo is None:
            geninfo = ""

        items = {**{'parameters': geninfo}, **items}

        return models.PNGInfoResponse(info=geninfo, items=items)

    def progressapi(self, req: models.ProgressRequest = Depends()):
        # copy from check_progress_call of ui.py

        if shared.state.job_count == 0:
            return models.ProgressResponse(progress=0, eta_relative=0, state=shared.state.dict(), textinfo=shared.state.textinfo)

        # avoid dividing zero
        progress = 0.01

        if shared.state.job_count > 0:
            progress += shared.state.job_no / shared.state.job_count
        if shared.state.sampling_steps > 0:
            progress += 1 / shared.state.job_count * shared.state.sampling_step / shared.state.sampling_steps

        time_since_start = time.time() - shared.state.time_start
        eta = (time_since_start/progress)
        eta_relative = eta-time_since_start

        progress = min(progress, 1)

        shared.state.set_current_image()

        current_image = None
        if shared.state.current_image and not req.skip_current_image:
            current_image = encode_pil_to_base64(shared.state.current_image)

        return models.ProgressResponse(progress=progress, eta_relative=eta_relative, state=shared.state.dict(), current_image=current_image, textinfo=shared.state.textinfo)

    def interrogateapi(self, interrogatereq: models.InterrogateRequest):
        image_b64 = interrogatereq.image
        if image_b64 is None:
            raise HTTPException(status_code=404, detail="Image not found")

        img = decode_base64_to_image(image_b64)
        img = img.convert('RGB')

        # Override object param
        with self.queue_lock:
            if interrogatereq.model == "clip":
                processed = shared.interrogator.interrogate(img)
            elif interrogatereq.model == "deepdanbooru":
                processed = deepbooru.model.tag(img)
            else:
                raise HTTPException(status_code=404, detail="Model not found")

        return models.InterrogateResponse(caption=processed)

    def interruptapi(self):
        shared.state.interrupt()

        return {}

    def unloadapi(self):
        unload_model_weights()

        return {}

    def reloadapi(self):
        reload_model_weights()

        return {}

    def skip(self):
        shared.state.skip()

    def get_config(self):
        options = {}
        for key in shared.opts.data.keys():
            metadata = shared.opts.data_labels.get(key)
            if(metadata is not None):
                options.update({key: shared.opts.data.get(key, shared.opts.data_labels.get(key).default)})
            else:
                options.update({key: shared.opts.data.get(key, None)})

        return options

    def set_config(self, req: Dict[str, Any]):
        checkpoint_name = req.get("sd_model_checkpoint", None)
        if checkpoint_name is not None and checkpoint_name not in checkpoint_aliases:
            raise RuntimeError(f"model {checkpoint_name!r} not found")

        for k, v in req.items():
            shared.opts.set(k, v, is_api=True)

        shared.opts.save(shared.config_filename)
        return

    def get_cmd_flags(self):
        return vars(shared.cmd_opts)

    def get_samplers(self):
        return [{"name": sampler[0], "aliases":sampler[2], "options":sampler[3]} for sampler in sd_samplers.all_samplers]

    def get_upscalers(self):
        return [
            {
                "name": upscaler.name,
                "model_name": upscaler.scaler.model_name,
                "model_path": upscaler.data_path,
                "model_url": None,
                "scale": upscaler.scale,
            }
            for upscaler in shared.sd_upscalers
        ]

    def get_latent_upscale_modes(self):
        return [
            {
                "name": upscale_mode,
            }
            for upscale_mode in [*(shared.latent_upscale_modes or {})]
        ]

    def get_sd_models(self):
        import modules.sd_models as sd_models
        return [{"title": x.title, "model_name": x.model_name, "hash": x.shorthash, "sha256": x.sha256, "filename": x.filename, "config": find_checkpoint_config_near_filename(x)} for x in sd_models.checkpoints_list.values()]

    def get_sd_vaes(self):
        import modules.sd_vae as sd_vae
        return [{"model_name": x, "filename": sd_vae.vae_dict[x]} for x in sd_vae.vae_dict.keys()]

    def get_hypernetworks(self):
        return [{"name": name, "path": shared.hypernetworks[name]} for name in shared.hypernetworks]

    def get_face_restorers(self):
        return [{"name":x.name(), "cmd_dir": getattr(x, "cmd_dir", None)} for x in shared.face_restorers]

    def get_realesrgan_models(self):
        return [{"name":x.name,"path":x.data_path, "scale":x.scale} for x in get_realesrgan_models(None)]

    def get_prompt_styles(self):
        styleList = []
        for k in shared.prompt_styles.styles:
            style = shared.prompt_styles.styles[k]
            styleList.append({"name":style[0], "prompt": style[1], "negative_prompt": style[2]})

        return styleList

    def get_embeddings(self):
        db = sd_hijack.model_hijack.embedding_db

        def convert_embedding(embedding):
            return {
                "step": embedding.step,
                "sd_checkpoint": embedding.sd_checkpoint,
                "sd_checkpoint_name": embedding.sd_checkpoint_name,
                "shape": embedding.shape,
                "vectors": embedding.vectors,
            }

        def convert_embeddings(embeddings):
            return {embedding.name: convert_embedding(embedding) for embedding in embeddings.values()}

        return {
            "loaded": convert_embeddings(db.word_embeddings),
            "skipped": convert_embeddings(db.skipped_embeddings),
        }

    def refresh_checkpoints(self):
        with self.queue_lock:
            shared.refresh_checkpoints()

    def refresh_vae(self):
        with self.queue_lock:
            shared_items.refresh_vae_list()

    def create_embedding(self, args: dict):
        try:
            shared.state.begin(job="create_embedding")
            filename = create_embedding(**args) # create empty embedding
            sd_hijack.model_hijack.embedding_db.load_textual_inversion_embeddings() # reload embeddings so new one can be immediately used
            return models.CreateResponse(info=f"create embedding filename: {filename}")
        except AssertionError as e:
            return models.TrainResponse(info=f"create embedding error: {e}")
        finally:
            shared.state.end()


    def create_hypernetwork(self, args: dict):
        try:
            shared.state.begin(job="create_hypernetwork")
            filename = create_hypernetwork(**args) # create empty embedding
            return models.CreateResponse(info=f"create hypernetwork filename: {filename}")
        except AssertionError as e:
            return models.TrainResponse(info=f"create hypernetwork error: {e}")
        finally:
            shared.state.end()

    def preprocess(self, args: dict):
        try:
            shared.state.begin(job="preprocess")
            preprocess(**args) # quick operation unless blip/booru interrogation is enabled
            shared.state.end()
            return models.PreprocessResponse(info='preprocess complete')
        except KeyError as e:
            return models.PreprocessResponse(info=f"preprocess error: invalid token: {e}")
        except Exception as e:
            return models.PreprocessResponse(info=f"preprocess error: {e}")
        finally:
            shared.state.end()

    def train_embedding(self, args: dict):
        try:
            shared.state.begin(job="train_embedding")
            apply_optimizations = shared.opts.training_xattention_optimizations
            error = None
            filename = ''
            if not apply_optimizations:
                sd_hijack.undo_optimizations()
            try:
                embedding, filename = train_embedding(**args) # can take a long time to complete
            except Exception as e:
                error = e
            finally:
                if not apply_optimizations:
                    sd_hijack.apply_optimizations()
            return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
        except Exception as msg:
            return models.TrainResponse(info=f"train embedding error: {msg}")
        finally:
            shared.state.end()

    def train_hypernetwork(self, args: dict):
        try:
            shared.state.begin(job="train_hypernetwork")
            shared.loaded_hypernetworks = []
            apply_optimizations = shared.opts.training_xattention_optimizations
            error = None
            filename = ''
            if not apply_optimizations:
                sd_hijack.undo_optimizations()
            try:
                hypernetwork, filename = train_hypernetwork(**args)
            except Exception as e:
                error = e
            finally:
                shared.sd_model.cond_stage_model.to(devices.device)
                shared.sd_model.first_stage_model.to(devices.device)
                if not apply_optimizations:
                    sd_hijack.apply_optimizations()
                shared.state.end()
            return models.TrainResponse(info=f"train embedding complete: filename: {filename} error: {error}")
        except Exception as exc:
            return models.TrainResponse(info=f"train embedding error: {exc}")
        finally:
            shared.state.end()

    def get_memory(self):
        try:
            import os
            import psutil
            process = psutil.Process(os.getpid())
            res = process.memory_info() # only rss is cross-platform guaranteed so we dont rely on other values
            ram_total = 100 * res.rss / process.memory_percent() # and total memory is calculated as actual value is not cross-platform safe
            ram = { 'free': ram_total - res.rss, 'used': res.rss, 'total': ram_total }
        except Exception as err:
            ram = { 'error': f'{err}' }
        try:
            import torch
            if torch.cuda.is_available():
                s = torch.cuda.mem_get_info()
                system = { 'free': s[0], 'used': s[1] - s[0], 'total': s[1] }
                s = dict(torch.cuda.memory_stats(shared.device))
                allocated = { 'current': s['allocated_bytes.all.current'], 'peak': s['allocated_bytes.all.peak'] }
                reserved = { 'current': s['reserved_bytes.all.current'], 'peak': s['reserved_bytes.all.peak'] }
                active = { 'current': s['active_bytes.all.current'], 'peak': s['active_bytes.all.peak'] }
                inactive = { 'current': s['inactive_split_bytes.all.current'], 'peak': s['inactive_split_bytes.all.peak'] }
                warnings = { 'retries': s['num_alloc_retries'], 'oom': s['num_ooms'] }
                cuda = {
                    'system': system,
                    'active': active,
                    'allocated': allocated,
                    'reserved': reserved,
                    'inactive': inactive,
                    'events': warnings,
                }
            else:
                cuda = {'error': 'unavailable'}
        except Exception as err:
            cuda = {'error': f'{err}'}
        return models.MemoryResponse(ram=ram, cuda=cuda)

    def launch(self, server_name, port, root_path):
        self.app.include_router(self.router)
        uvicorn.run(self.app, host=server_name, port=port, timeout_keep_alive=shared.cmd_opts.timeout_keep_alive, root_path=root_path)

    def kill_webui(self):
        restart.stop_program()

    def restart_webui(self):
        if restart.is_restartable():
            restart.restart_program()
        return Response(status_code=501)

    def stop_webui(request):
        shared.state.server_command = "stop"
        return Response("Stopping.")