File size: 8,952 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
from collections import namedtuple

import numpy as np
from tqdm import trange

import modules.scripts as scripts
import gradio as gr

from modules import processing, shared, sd_samplers, sd_samplers_common

import torch
import k_diffusion as K

def find_noise_for_image(p, cond, uncond, cfg_scale, steps):
    x = p.init_latent

    s_in = x.new_ones([x.shape[0]])
    if shared.sd_model.parameterization == "v":
        dnw = K.external.CompVisVDenoiser(shared.sd_model)
        skip = 1
    else:
        dnw = K.external.CompVisDenoiser(shared.sd_model)
        skip = 0
    sigmas = dnw.get_sigmas(steps).flip(0)

    shared.state.sampling_steps = steps

    for i in trange(1, len(sigmas)):
        shared.state.sampling_step += 1

        x_in = torch.cat([x] * 2)
        sigma_in = torch.cat([sigmas[i] * s_in] * 2)
        cond_in = torch.cat([uncond, cond])

        image_conditioning = torch.cat([p.image_conditioning] * 2)
        cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}

        c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]
        t = dnw.sigma_to_t(sigma_in)

        eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
        denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)

        denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale

        d = (x - denoised) / sigmas[i]
        dt = sigmas[i] - sigmas[i - 1]

        x = x + d * dt

        sd_samplers_common.store_latent(x)

        # This shouldn't be necessary, but solved some VRAM issues
        del x_in, sigma_in, cond_in, c_out, c_in, t,
        del eps, denoised_uncond, denoised_cond, denoised, d, dt

    shared.state.nextjob()

    return x / x.std()


Cached = namedtuple("Cached", ["noise", "cfg_scale", "steps", "latent", "original_prompt", "original_negative_prompt", "sigma_adjustment"])


# Based on changes suggested by briansemrau in https://github.com/AUTOMATIC1111/stable-diffusion-webui/issues/736
def find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg_scale, steps):
    x = p.init_latent

    s_in = x.new_ones([x.shape[0]])
    if shared.sd_model.parameterization == "v":
        dnw = K.external.CompVisVDenoiser(shared.sd_model)
        skip = 1
    else:
        dnw = K.external.CompVisDenoiser(shared.sd_model)
        skip = 0
    sigmas = dnw.get_sigmas(steps).flip(0)

    shared.state.sampling_steps = steps

    for i in trange(1, len(sigmas)):
        shared.state.sampling_step += 1

        x_in = torch.cat([x] * 2)
        sigma_in = torch.cat([sigmas[i - 1] * s_in] * 2)
        cond_in = torch.cat([uncond, cond])

        image_conditioning = torch.cat([p.image_conditioning] * 2)
        cond_in = {"c_concat": [image_conditioning], "c_crossattn": [cond_in]}

        c_out, c_in = [K.utils.append_dims(k, x_in.ndim) for k in dnw.get_scalings(sigma_in)[skip:]]

        if i == 1:
            t = dnw.sigma_to_t(torch.cat([sigmas[i] * s_in] * 2))
        else:
            t = dnw.sigma_to_t(sigma_in)

        eps = shared.sd_model.apply_model(x_in * c_in, t, cond=cond_in)
        denoised_uncond, denoised_cond = (x_in + eps * c_out).chunk(2)

        denoised = denoised_uncond + (denoised_cond - denoised_uncond) * cfg_scale

        if i == 1:
            d = (x - denoised) / (2 * sigmas[i])
        else:
            d = (x - denoised) / sigmas[i - 1]

        dt = sigmas[i] - sigmas[i - 1]
        x = x + d * dt

        sd_samplers_common.store_latent(x)

        # This shouldn't be necessary, but solved some VRAM issues
        del x_in, sigma_in, cond_in, c_out, c_in, t,
        del eps, denoised_uncond, denoised_cond, denoised, d, dt

    shared.state.nextjob()

    return x / sigmas[-1]


class Script(scripts.Script):
    def __init__(self):
        self.cache = None

    def title(self):
        return "img2img alternative test"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):
        info = gr.Markdown('''
        * `CFG Scale` should be 2 or lower.
        ''')

        override_sampler = gr.Checkbox(label="Override `Sampling method` to Euler?(this method is built for it)", value=True, elem_id=self.elem_id("override_sampler"))

        override_prompt = gr.Checkbox(label="Override `prompt` to the same value as `original prompt`?(and `negative prompt`)", value=True, elem_id=self.elem_id("override_prompt"))
        original_prompt = gr.Textbox(label="Original prompt", lines=1, elem_id=self.elem_id("original_prompt"))
        original_negative_prompt = gr.Textbox(label="Original negative prompt", lines=1, elem_id=self.elem_id("original_negative_prompt"))

        override_steps = gr.Checkbox(label="Override `Sampling Steps` to the same value as `Decode steps`?", value=True, elem_id=self.elem_id("override_steps"))
        st = gr.Slider(label="Decode steps", minimum=1, maximum=150, step=1, value=50, elem_id=self.elem_id("st"))

        override_strength = gr.Checkbox(label="Override `Denoising strength` to 1?", value=True, elem_id=self.elem_id("override_strength"))

        cfg = gr.Slider(label="Decode CFG scale", minimum=0.0, maximum=15.0, step=0.1, value=1.0, elem_id=self.elem_id("cfg"))
        randomness = gr.Slider(label="Randomness", minimum=0.0, maximum=1.0, step=0.01, value=0.0, elem_id=self.elem_id("randomness"))
        sigma_adjustment = gr.Checkbox(label="Sigma adjustment for finding noise for image", value=False, elem_id=self.elem_id("sigma_adjustment"))

        return [
            info,
            override_sampler,
            override_prompt, original_prompt, original_negative_prompt,
            override_steps, st,
            override_strength,
            cfg, randomness, sigma_adjustment,
        ]

    def run(self, p, _, override_sampler, override_prompt, original_prompt, original_negative_prompt, override_steps, st, override_strength, cfg, randomness, sigma_adjustment):
        # Override
        if override_sampler:
            p.sampler_name = "Euler"
        if override_prompt:
            p.prompt = original_prompt
            p.negative_prompt = original_negative_prompt
        if override_steps:
            p.steps = st
        if override_strength:
            p.denoising_strength = 1.0

        def sample_extra(conditioning, unconditional_conditioning, seeds, subseeds, subseed_strength, prompts):
            lat = (p.init_latent.cpu().numpy() * 10).astype(int)

            same_params = self.cache is not None and self.cache.cfg_scale == cfg and self.cache.steps == st \
                                and self.cache.original_prompt == original_prompt \
                                and self.cache.original_negative_prompt == original_negative_prompt \
                                and self.cache.sigma_adjustment == sigma_adjustment
            same_everything = same_params and self.cache.latent.shape == lat.shape and np.abs(self.cache.latent-lat).sum() < 100

            if same_everything:
                rec_noise = self.cache.noise
            else:
                shared.state.job_count += 1
                cond = p.sd_model.get_learned_conditioning(p.batch_size * [original_prompt])
                uncond = p.sd_model.get_learned_conditioning(p.batch_size * [original_negative_prompt])
                if sigma_adjustment:
                    rec_noise = find_noise_for_image_sigma_adjustment(p, cond, uncond, cfg, st)
                else:
                    rec_noise = find_noise_for_image(p, cond, uncond, cfg, st)
                self.cache = Cached(rec_noise, cfg, st, lat, original_prompt, original_negative_prompt, sigma_adjustment)

            rand_noise = processing.create_random_tensors(p.init_latent.shape[1:], seeds=seeds, subseeds=subseeds, subseed_strength=p.subseed_strength, seed_resize_from_h=p.seed_resize_from_h, seed_resize_from_w=p.seed_resize_from_w, p=p)

            combined_noise = ((1 - randomness) * rec_noise + randomness * rand_noise) / ((randomness**2 + (1-randomness)**2) ** 0.5)

            sampler = sd_samplers.create_sampler(p.sampler_name, p.sd_model)

            sigmas = sampler.model_wrap.get_sigmas(p.steps)

            noise_dt = combined_noise - (p.init_latent / sigmas[0])

            p.seed = p.seed + 1

            return sampler.sample_img2img(p, p.init_latent, noise_dt, conditioning, unconditional_conditioning, image_conditioning=p.image_conditioning)

        p.sample = sample_extra

        p.extra_generation_params["Decode prompt"] = original_prompt
        p.extra_generation_params["Decode negative prompt"] = original_negative_prompt
        p.extra_generation_params["Decode CFG scale"] = cfg
        p.extra_generation_params["Decode steps"] = st
        p.extra_generation_params["Randomness"] = randomness
        p.extra_generation_params["Sigma Adjustment"] = sigma_adjustment

        processed = processing.process_images(p)

        return processed