File size: 10,729 Bytes
3f9c56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
from typing import List, Tuple, Union, Optional

import torch
import torch.nn as nn
import torch.nn.functional as F

from annotator.lama.saicinpainting.training.modules.base import get_conv_block_ctor, get_activation
from annotator.lama.saicinpainting.training.modules.pix2pixhd import ResnetBlock


class ResNetHead(nn.Module):
    def __init__(self, input_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
                 padding_type='reflect', conv_kind='default', activation=nn.ReLU(True)):
        assert (n_blocks >= 0)
        super(ResNetHead, self).__init__()

        conv_layer = get_conv_block_ctor(conv_kind)

        model = [nn.ReflectionPad2d(3),
                 conv_layer(input_nc, ngf, kernel_size=7, padding=0),
                 norm_layer(ngf),
                 activation]

        ### downsample
        for i in range(n_downsampling):
            mult = 2 ** i
            model += [conv_layer(ngf * mult, ngf * mult * 2, kernel_size=3, stride=2, padding=1),
                      norm_layer(ngf * mult * 2),
                      activation]

        mult = 2 ** n_downsampling

        ### resnet blocks
        for i in range(n_blocks):
            model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
                                  conv_kind=conv_kind)]

        self.model = nn.Sequential(*model)

    def forward(self, input):
        return self.model(input)


class ResNetTail(nn.Module):
    def __init__(self, output_nc, ngf=64, n_downsampling=3, n_blocks=9, norm_layer=nn.BatchNorm2d,
                 padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
                 up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
                 add_in_proj=None):
        assert (n_blocks >= 0)
        super(ResNetTail, self).__init__()

        mult = 2 ** n_downsampling

        model = []

        if add_in_proj is not None:
            model.append(nn.Conv2d(add_in_proj, ngf * mult, kernel_size=1))

        ### resnet blocks
        for i in range(n_blocks):
            model += [ResnetBlock(ngf * mult, padding_type=padding_type, activation=activation, norm_layer=norm_layer,
                                  conv_kind=conv_kind)]

        ### upsample
        for i in range(n_downsampling):
            mult = 2 ** (n_downsampling - i)
            model += [nn.ConvTranspose2d(ngf * mult, int(ngf * mult / 2), kernel_size=3, stride=2, padding=1,
                                         output_padding=1),
                      up_norm_layer(int(ngf * mult / 2)),
                      up_activation]
        self.model = nn.Sequential(*model)

        out_layers = []
        for _ in range(out_extra_layers_n):
            out_layers += [nn.Conv2d(ngf, ngf, kernel_size=1, padding=0),
                           up_norm_layer(ngf),
                           up_activation]
        out_layers += [nn.ReflectionPad2d(3),
                       nn.Conv2d(ngf, output_nc, kernel_size=7, padding=0)]

        if add_out_act:
            out_layers.append(get_activation('tanh' if add_out_act is True else add_out_act))

        self.out_proj = nn.Sequential(*out_layers)

    def forward(self, input, return_last_act=False):
        features = self.model(input)
        out = self.out_proj(features)
        if return_last_act:
            return out, features
        else:
            return out


class MultiscaleResNet(nn.Module):
    def __init__(self, input_nc, output_nc, ngf=64, n_downsampling=2, n_blocks_head=2, n_blocks_tail=6, n_scales=3,
                 norm_layer=nn.BatchNorm2d, padding_type='reflect', conv_kind='default', activation=nn.ReLU(True),
                 up_norm_layer=nn.BatchNorm2d, up_activation=nn.ReLU(True), add_out_act=False, out_extra_layers_n=0,
                 out_cumulative=False, return_only_hr=False):
        super().__init__()

        self.heads = nn.ModuleList([ResNetHead(input_nc, ngf=ngf, n_downsampling=n_downsampling,
                                               n_blocks=n_blocks_head, norm_layer=norm_layer, padding_type=padding_type,
                                               conv_kind=conv_kind, activation=activation)
                                    for i in range(n_scales)])
        tail_in_feats = ngf * (2 ** n_downsampling) + ngf
        self.tails = nn.ModuleList([ResNetTail(output_nc,
                                               ngf=ngf, n_downsampling=n_downsampling,
                                               n_blocks=n_blocks_tail, norm_layer=norm_layer, padding_type=padding_type,
                                               conv_kind=conv_kind, activation=activation, up_norm_layer=up_norm_layer,
                                               up_activation=up_activation, add_out_act=add_out_act,
                                               out_extra_layers_n=out_extra_layers_n,
                                               add_in_proj=None if (i == n_scales - 1) else tail_in_feats)
                                    for i in range(n_scales)])

        self.out_cumulative = out_cumulative
        self.return_only_hr = return_only_hr

    @property
    def num_scales(self):
        return len(self.heads)

    def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
        -> Union[torch.Tensor, List[torch.Tensor]]:
        """
        :param ms_inputs: List of inputs of different resolutions from HR to LR
        :param smallest_scales_num: int or None, number of smallest scales to take at input
        :return: Depending on return_only_hr:
            True: Only the most HR output
            False: List of outputs of different resolutions from HR to LR
        """
        if smallest_scales_num is None:
            assert len(self.heads) == len(ms_inputs), (len(self.heads), len(ms_inputs), smallest_scales_num)
            smallest_scales_num = len(self.heads)
        else:
            assert smallest_scales_num == len(ms_inputs) <= len(self.heads), (len(self.heads), len(ms_inputs), smallest_scales_num)

        cur_heads = self.heads[-smallest_scales_num:]
        ms_features = [cur_head(cur_inp) for cur_head, cur_inp in zip(cur_heads, ms_inputs)]

        all_outputs = []
        prev_tail_features = None
        for i in range(len(ms_features)):
            scale_i = -i - 1

            cur_tail_input = ms_features[-i - 1]
            if prev_tail_features is not None:
                if prev_tail_features.shape != cur_tail_input.shape:
                    prev_tail_features = F.interpolate(prev_tail_features, size=cur_tail_input.shape[2:],
                                                       mode='bilinear', align_corners=False)
                cur_tail_input = torch.cat((cur_tail_input, prev_tail_features), dim=1)

            cur_out, cur_tail_feats = self.tails[scale_i](cur_tail_input, return_last_act=True)

            prev_tail_features = cur_tail_feats
            all_outputs.append(cur_out)

        if self.out_cumulative:
            all_outputs_cum = [all_outputs[0]]
            for i in range(1, len(ms_features)):
                cur_out = all_outputs[i]
                cur_out_cum = cur_out + F.interpolate(all_outputs_cum[-1], size=cur_out.shape[2:],
                                                      mode='bilinear', align_corners=False)
                all_outputs_cum.append(cur_out_cum)
            all_outputs = all_outputs_cum

        if self.return_only_hr:
            return all_outputs[-1]
        else:
            return all_outputs[::-1]


class MultiscaleDiscriminatorSimple(nn.Module):
    def __init__(self, ms_impl):
        super().__init__()
        self.ms_impl = nn.ModuleList(ms_impl)

    @property
    def num_scales(self):
        return len(self.ms_impl)

    def forward(self, ms_inputs: List[torch.Tensor], smallest_scales_num: Optional[int] = None) \
            -> List[Tuple[torch.Tensor, List[torch.Tensor]]]:
        """
        :param ms_inputs: List of inputs of different resolutions from HR to LR
        :param smallest_scales_num: int or None, number of smallest scales to take at input
        :return: List of pairs (prediction, features) for different resolutions from HR to LR
        """
        if smallest_scales_num is None:
            assert len(self.ms_impl) == len(ms_inputs), (len(self.ms_impl), len(ms_inputs), smallest_scales_num)
            smallest_scales_num = len(self.heads)
        else:
            assert smallest_scales_num == len(ms_inputs) <= len(self.ms_impl), \
                (len(self.ms_impl), len(ms_inputs), smallest_scales_num)

        return [cur_discr(cur_input) for cur_discr, cur_input in zip(self.ms_impl[-smallest_scales_num:], ms_inputs)]


class SingleToMultiScaleInputMixin:
    def forward(self, x: torch.Tensor) -> List:
        orig_height, orig_width = x.shape[2:]
        factors = [2 ** i for i in range(self.num_scales)]
        ms_inputs = [F.interpolate(x, size=(orig_height // f, orig_width // f), mode='bilinear', align_corners=False)
                     for f in factors]
        return super().forward(ms_inputs)


class GeneratorMultiToSingleOutputMixin:
    def forward(self, x):
        return super().forward(x)[0]


class DiscriminatorMultiToSingleOutputMixin:
    def forward(self, x):
        out_feat_tuples = super().forward(x)
        return out_feat_tuples[0][0], [f for _, flist in out_feat_tuples for f in flist]


class DiscriminatorMultiToSingleOutputStackedMixin:
    def __init__(self, *args, return_feats_only_levels=None, **kwargs):
        super().__init__(*args, **kwargs)
        self.return_feats_only_levels = return_feats_only_levels

    def forward(self, x):
        out_feat_tuples = super().forward(x)
        outs = [out for out, _ in out_feat_tuples]
        scaled_outs = [outs[0]] + [F.interpolate(cur_out, size=outs[0].shape[-2:],
                                                 mode='bilinear', align_corners=False)
                                   for cur_out in outs[1:]]
        out = torch.cat(scaled_outs, dim=1)
        if self.return_feats_only_levels is not None:
            feat_lists = [out_feat_tuples[i][1] for i in self.return_feats_only_levels]
        else:
            feat_lists = [flist for _, flist in out_feat_tuples]
        feats = [f for flist in feat_lists for f in flist]
        return out, feats


class MultiscaleDiscrSingleInput(SingleToMultiScaleInputMixin, DiscriminatorMultiToSingleOutputStackedMixin, MultiscaleDiscriminatorSimple):
    pass


class MultiscaleResNetSingle(GeneratorMultiToSingleOutputMixin, SingleToMultiScaleInputMixin, MultiscaleResNet):
    pass