File size: 3,856 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
import math

import modules.scripts as scripts
import gradio as gr
from PIL import Image

from modules import processing, shared, images, devices
from modules.processing import Processed
from modules.shared import opts, state


class Script(scripts.Script):
    def title(self):
        return "SD upscale"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):
        info = gr.HTML("<p style=\"margin-bottom:0.75em\">Will upscale the image by the selected scale factor; use width and height sliders to set tile size</p>")
        overlap = gr.Slider(minimum=0, maximum=256, step=16, label='Tile overlap', value=64, elem_id=self.elem_id("overlap"))
        scale_factor = gr.Slider(minimum=1.0, maximum=4.0, step=0.05, label='Scale Factor', value=2.0, elem_id=self.elem_id("scale_factor"))
        upscaler_index = gr.Radio(label='Upscaler', choices=[x.name for x in shared.sd_upscalers], value=shared.sd_upscalers[0].name, type="index", elem_id=self.elem_id("upscaler_index"))

        return [info, overlap, upscaler_index, scale_factor]

    def run(self, p, _, overlap, upscaler_index, scale_factor):
        if isinstance(upscaler_index, str):
            upscaler_index = [x.name.lower() for x in shared.sd_upscalers].index(upscaler_index.lower())
        processing.fix_seed(p)
        upscaler = shared.sd_upscalers[upscaler_index]

        p.extra_generation_params["SD upscale overlap"] = overlap
        p.extra_generation_params["SD upscale upscaler"] = upscaler.name

        initial_info = None
        seed = p.seed

        init_img = p.init_images[0]
        init_img = images.flatten(init_img, opts.img2img_background_color)

        if upscaler.name != "None":
            img = upscaler.scaler.upscale(init_img, scale_factor, upscaler.data_path)
        else:
            img = init_img

        devices.torch_gc()

        grid = images.split_grid(img, tile_w=p.width, tile_h=p.height, overlap=overlap)

        batch_size = p.batch_size
        upscale_count = p.n_iter
        p.n_iter = 1
        p.do_not_save_grid = True
        p.do_not_save_samples = True

        work = []

        for _y, _h, row in grid.tiles:
            for tiledata in row:
                work.append(tiledata[2])

        batch_count = math.ceil(len(work) / batch_size)
        state.job_count = batch_count * upscale_count

        print(f"SD upscaling will process a total of {len(work)} images tiled as {len(grid.tiles[0][2])}x{len(grid.tiles)} per upscale in a total of {state.job_count} batches.")

        result_images = []
        for n in range(upscale_count):
            start_seed = seed + n
            p.seed = start_seed

            work_results = []
            for i in range(batch_count):
                p.batch_size = batch_size
                p.init_images = work[i * batch_size:(i + 1) * batch_size]

                state.job = f"Batch {i + 1 + n * batch_count} out of {state.job_count}"
                processed = processing.process_images(p)

                if initial_info is None:
                    initial_info = processed.info

                p.seed = processed.seed + 1
                work_results += processed.images

            image_index = 0
            for _y, _h, row in grid.tiles:
                for tiledata in row:
                    tiledata[2] = work_results[image_index] if image_index < len(work_results) else Image.new("RGB", (p.width, p.height))
                    image_index += 1

            combined_image = images.combine_grid(grid)
            result_images.append(combined_image)

            if opts.samples_save:
                images.save_image(combined_image, p.outpath_samples, "", start_seed, p.prompt, opts.samples_format, info=initial_info, p=p)

        processed = Processed(p, result_images, seed, initial_info)

        return processed