File size: 5,146 Bytes
c9ea4f0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
import math

import gradio as gr
import modules.scripts as scripts
from modules import deepbooru, images, processing, shared
from modules.processing import Processed
from modules.shared import opts, state


class Script(scripts.Script):
    def title(self):
        return "Loopback"

    def show(self, is_img2img):
        return is_img2img

    def ui(self, is_img2img):
        loops = gr.Slider(minimum=1, maximum=32, step=1, label='Loops', value=4, elem_id=self.elem_id("loops"))
        final_denoising_strength = gr.Slider(minimum=0, maximum=1, step=0.01, label='Final denoising strength', value=0.5, elem_id=self.elem_id("final_denoising_strength"))
        denoising_curve = gr.Dropdown(label="Denoising strength curve", choices=["Aggressive", "Linear", "Lazy"], value="Linear")
        append_interrogation = gr.Dropdown(label="Append interrogated prompt at each iteration", choices=["None", "CLIP", "DeepBooru"], value="None")

        return [loops, final_denoising_strength, denoising_curve, append_interrogation]

    def run(self, p, loops, final_denoising_strength, denoising_curve, append_interrogation):
        processing.fix_seed(p)
        batch_count = p.n_iter
        p.extra_generation_params = {
            "Final denoising strength": final_denoising_strength,
            "Denoising curve": denoising_curve
        }

        p.batch_size = 1
        p.n_iter = 1

        info = None
        initial_seed = None
        initial_info = None
        initial_denoising_strength = p.denoising_strength

        grids = []
        all_images = []
        original_init_image = p.init_images
        original_prompt = p.prompt
        original_inpainting_fill = p.inpainting_fill
        state.job_count = loops * batch_count

        initial_color_corrections = [processing.setup_color_correction(p.init_images[0])]

        def calculate_denoising_strength(loop):
            strength = initial_denoising_strength

            if loops == 1:
                return strength

            progress = loop / (loops - 1)
            if denoising_curve == "Aggressive":
                strength = math.sin((progress) * math.pi * 0.5)
            elif denoising_curve == "Lazy":
                strength = 1 - math.cos((progress) * math.pi * 0.5)
            else:
                strength = progress

            change = (final_denoising_strength - initial_denoising_strength) * strength
            return initial_denoising_strength + change

        history = []

        for n in range(batch_count):
            # Reset to original init image at the start of each batch
            p.init_images = original_init_image

            # Reset to original denoising strength
            p.denoising_strength = initial_denoising_strength

            last_image = None

            for i in range(loops):
                p.n_iter = 1
                p.batch_size = 1
                p.do_not_save_grid = True

                if opts.img2img_color_correction:
                    p.color_corrections = initial_color_corrections

                if append_interrogation != "None":
                    p.prompt = f"{original_prompt}, " if original_prompt else ""
                    if append_interrogation == "CLIP":
                        p.prompt += shared.interrogator.interrogate(p.init_images[0])
                    elif append_interrogation == "DeepBooru":
                        p.prompt += deepbooru.model.tag(p.init_images[0])

                state.job = f"Iteration {i + 1}/{loops}, batch {n + 1}/{batch_count}"

                processed = processing.process_images(p)

                # Generation cancelled.
                if state.interrupted:
                    break

                if initial_seed is None:
                    initial_seed = processed.seed
                    initial_info = processed.info

                p.seed = processed.seed + 1
                p.denoising_strength = calculate_denoising_strength(i + 1)

                if state.skipped:
                    break

                last_image = processed.images[0]
                p.init_images = [last_image]
                p.inpainting_fill = 1 # Set "masked content" to "original" for next loop.

                if batch_count == 1:
                    history.append(last_image)
                    all_images.append(last_image)

            if batch_count > 1 and not state.skipped and not state.interrupted:
                history.append(last_image)
                all_images.append(last_image)

            p.inpainting_fill = original_inpainting_fill

            if state.interrupted:
                    break

        if len(history) > 1:
            grid = images.image_grid(history, rows=1)
            if opts.grid_save:
                images.save_image(grid, p.outpath_grids, "grid", initial_seed, p.prompt, opts.grid_format, info=info, short_filename=not opts.grid_extended_filename, grid=True, p=p)

            if opts.return_grid:
                grids.append(grid)

        all_images = grids + all_images

        processed = Processed(p, all_images, initial_seed, initial_info)

        return processed