File size: 10,480 Bytes
3f9c56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points


class Decoder(nn.Module):
    def __init__(self, args):
        super(Decoder, self).__init__()

        # hyper-parameter for sampling
        self.sampling_ratio = args.sampling_ratio
        self.importance_ratio = args.importance_ratio

        # feature-map
        self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
        if args.architecture == 'BN':
            self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
            self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
            self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
            self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)

        elif args.architecture == 'GN':
            self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
            self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
            self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
            self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)

        else:
            raise Exception('invalid architecture')

        # produces 1/8 res output
        self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)

        # produces 1/4 res output
        self.out_conv_res4 = nn.Sequential(
            nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 4, kernel_size=1),
        )

        # produces 1/2 res output
        self.out_conv_res2 = nn.Sequential(
            nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 4, kernel_size=1),
        )

        # produces 1/1 res output
        self.out_conv_res1 = nn.Sequential(
            nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
            nn.Conv1d(128, 4, kernel_size=1),
        )

    def forward(self, features, gt_norm_mask=None, mode='test'):
        x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]

        # generate feature-map

        x_d0 = self.conv2(x_block4)                     # x_d0 : [2, 2048, 15, 20]      1/32 res
        x_d1 = self.up1(x_d0, x_block3)                 # x_d1 : [2, 1024, 30, 40]      1/16 res
        x_d2 = self.up2(x_d1, x_block2)                 # x_d2 : [2, 512, 60, 80]       1/8 res
        x_d3 = self.up3(x_d2, x_block1)                 # x_d3: [2, 256, 120, 160]      1/4 res
        x_d4 = self.up4(x_d3, x_block0)                 # x_d4: [2, 128, 240, 320]      1/2 res

        # 1/8 res output
        out_res8 = self.out_conv_res8(x_d2)             # out_res8: [2, 4, 60, 80]      1/8 res output
        out_res8 = norm_normalize(out_res8)             # out_res8: [2, 4, 60, 80]      1/8 res output

        ################################################################################################################
        # out_res4
        ################################################################################################################

        if mode == 'train':
            # upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
            out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
            B, _, H, W = out_res8_res4.shape

            # samples: [B, 1, N, 2]
            point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
                                                                  sampling_ratio=self.sampling_ratio,
                                                                  beta=self.importance_ratio)

            # output (needed for evaluation / visualization)
            out_res4 = out_res8_res4

            # grid_sample feature-map
            feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True)  # (B, 512, 1, N)
            init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True)  # (B, 4, 1, N)
            feat_res4 = torch.cat([feat_res4, init_pred], dim=1)  # (B, 512+4, 1, N)

            # prediction (needed to compute loss)
            samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :])  # (B, 4, N)
            samples_pred_res4 = norm_normalize(samples_pred_res4)  # (B, 4, N) - normalized

            for i in range(B):
                out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]

        else:
            # grid_sample feature-map
            feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
            init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
            feat_map = torch.cat([feat_map, init_pred], dim=1)  # (B, 512+4, H, W)
            B, _, H, W = feat_map.shape

            # try all pixels
            out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1))  # (B, 4, N)
            out_res4 = norm_normalize(out_res4)  # (B, 4, N) - normalized
            out_res4 = out_res4.view(B, 4, H, W)
            samples_pred_res4 = point_coords_res4 = None

        ################################################################################################################
        # out_res2
        ################################################################################################################

        if mode == 'train':

            # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
            out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
            B, _, H, W = out_res4_res2.shape

            # samples: [B, 1, N, 2]
            point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
                                                                  sampling_ratio=self.sampling_ratio,
                                                                  beta=self.importance_ratio)

            # output (needed for evaluation / visualization)
            out_res2 = out_res4_res2

            # grid_sample feature-map
            feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True)  # (B, 256, 1, N)
            init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True)  # (B, 4, 1, N)
            feat_res2 = torch.cat([feat_res2, init_pred], dim=1)  # (B, 256+4, 1, N)

            # prediction (needed to compute loss)
            samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :])  # (B, 4, N)
            samples_pred_res2 = norm_normalize(samples_pred_res2)  # (B, 4, N) - normalized

            for i in range(B):
                out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]

        else:
            # grid_sample feature-map
            feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
            init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
            feat_map = torch.cat([feat_map, init_pred], dim=1)  # (B, 512+4, H, W)
            B, _, H, W = feat_map.shape

            out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1))  # (B, 4, N)
            out_res2 = norm_normalize(out_res2)  # (B, 4, N) - normalized
            out_res2 = out_res2.view(B, 4, H, W)
            samples_pred_res2 = point_coords_res2 = None

        ################################################################################################################
        # out_res1
        ################################################################################################################

        if mode == 'train':
            # upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
            out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
            B, _, H, W = out_res2_res1.shape

            # samples: [B, 1, N, 2]
            point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
                                                                  sampling_ratio=self.sampling_ratio,
                                                                  beta=self.importance_ratio)

            # output (needed for evaluation / visualization)
            out_res1 = out_res2_res1

            # grid_sample feature-map
            feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True)  # (B, 128, 1, N)
            init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True)  # (B, 4, 1, N)
            feat_res1 = torch.cat([feat_res1, init_pred], dim=1)  # (B, 128+4, 1, N)

            # prediction (needed to compute loss)
            samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :])  # (B, 4, N)
            samples_pred_res1 = norm_normalize(samples_pred_res1)  # (B, 4, N) - normalized

            for i in range(B):
                out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]

        else:
            # grid_sample feature-map
            feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
            init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
            feat_map = torch.cat([feat_map, init_pred], dim=1)  # (B, 512+4, H, W)
            B, _, H, W = feat_map.shape

            out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1))  # (B, 4, N)
            out_res1 = norm_normalize(out_res1)  # (B, 4, N) - normalized
            out_res1 = out_res1.view(B, 4, H, W)
            samples_pred_res1 = point_coords_res1 = None

        return [out_res8, out_res4, out_res2, out_res1], \
               [out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
               [None, point_coords_res4, point_coords_res2, point_coords_res1]