Spaces:
Paused
Paused
File size: 10,480 Bytes
3f9c56c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 |
import torch
import torch.nn as nn
import torch.nn.functional as F
from .submodules import UpSampleBN, UpSampleGN, norm_normalize, sample_points
class Decoder(nn.Module):
def __init__(self, args):
super(Decoder, self).__init__()
# hyper-parameter for sampling
self.sampling_ratio = args.sampling_ratio
self.importance_ratio = args.importance_ratio
# feature-map
self.conv2 = nn.Conv2d(2048, 2048, kernel_size=1, stride=1, padding=0)
if args.architecture == 'BN':
self.up1 = UpSampleBN(skip_input=2048 + 176, output_features=1024)
self.up2 = UpSampleBN(skip_input=1024 + 64, output_features=512)
self.up3 = UpSampleBN(skip_input=512 + 40, output_features=256)
self.up4 = UpSampleBN(skip_input=256 + 24, output_features=128)
elif args.architecture == 'GN':
self.up1 = UpSampleGN(skip_input=2048 + 176, output_features=1024)
self.up2 = UpSampleGN(skip_input=1024 + 64, output_features=512)
self.up3 = UpSampleGN(skip_input=512 + 40, output_features=256)
self.up4 = UpSampleGN(skip_input=256 + 24, output_features=128)
else:
raise Exception('invalid architecture')
# produces 1/8 res output
self.out_conv_res8 = nn.Conv2d(512, 4, kernel_size=3, stride=1, padding=1)
# produces 1/4 res output
self.out_conv_res4 = nn.Sequential(
nn.Conv1d(512 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
# produces 1/2 res output
self.out_conv_res2 = nn.Sequential(
nn.Conv1d(256 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
# produces 1/1 res output
self.out_conv_res1 = nn.Sequential(
nn.Conv1d(128 + 4, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 128, kernel_size=1), nn.ReLU(),
nn.Conv1d(128, 4, kernel_size=1),
)
def forward(self, features, gt_norm_mask=None, mode='test'):
x_block0, x_block1, x_block2, x_block3, x_block4 = features[4], features[5], features[6], features[8], features[11]
# generate feature-map
x_d0 = self.conv2(x_block4) # x_d0 : [2, 2048, 15, 20] 1/32 res
x_d1 = self.up1(x_d0, x_block3) # x_d1 : [2, 1024, 30, 40] 1/16 res
x_d2 = self.up2(x_d1, x_block2) # x_d2 : [2, 512, 60, 80] 1/8 res
x_d3 = self.up3(x_d2, x_block1) # x_d3: [2, 256, 120, 160] 1/4 res
x_d4 = self.up4(x_d3, x_block0) # x_d4: [2, 128, 240, 320] 1/2 res
# 1/8 res output
out_res8 = self.out_conv_res8(x_d2) # out_res8: [2, 4, 60, 80] 1/8 res output
out_res8 = norm_normalize(out_res8) # out_res8: [2, 4, 60, 80] 1/8 res output
################################################################################################################
# out_res4
################################################################################################################
if mode == 'train':
# upsampling ... out_res8: [2, 4, 60, 80] -> out_res8_res4: [2, 4, 120, 160]
out_res8_res4 = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res8_res4.shape
# samples: [B, 1, N, 2]
point_coords_res4, rows_int, cols_int = sample_points(out_res8_res4.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res4 = out_res8_res4
# grid_sample feature-map
feat_res4 = F.grid_sample(x_d2, point_coords_res4, mode='bilinear', align_corners=True) # (B, 512, 1, N)
init_pred = F.grid_sample(out_res8, point_coords_res4, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res4 = torch.cat([feat_res4, init_pred], dim=1) # (B, 512+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res4 = self.out_conv_res4(feat_res4[:, :, 0, :]) # (B, 4, N)
samples_pred_res4 = norm_normalize(samples_pred_res4) # (B, 4, N) - normalized
for i in range(B):
out_res4[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res4[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d2, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res8, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
# try all pixels
out_res4 = self.out_conv_res4(feat_map.view(B, 512 + 4, -1)) # (B, 4, N)
out_res4 = norm_normalize(out_res4) # (B, 4, N) - normalized
out_res4 = out_res4.view(B, 4, H, W)
samples_pred_res4 = point_coords_res4 = None
################################################################################################################
# out_res2
################################################################################################################
if mode == 'train':
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
out_res4_res2 = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res4_res2.shape
# samples: [B, 1, N, 2]
point_coords_res2, rows_int, cols_int = sample_points(out_res4_res2.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res2 = out_res4_res2
# grid_sample feature-map
feat_res2 = F.grid_sample(x_d3, point_coords_res2, mode='bilinear', align_corners=True) # (B, 256, 1, N)
init_pred = F.grid_sample(out_res4, point_coords_res2, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res2 = torch.cat([feat_res2, init_pred], dim=1) # (B, 256+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res2 = self.out_conv_res2(feat_res2[:, :, 0, :]) # (B, 4, N)
samples_pred_res2 = norm_normalize(samples_pred_res2) # (B, 4, N) - normalized
for i in range(B):
out_res2[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res2[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d3, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res4, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
out_res2 = self.out_conv_res2(feat_map.view(B, 256 + 4, -1)) # (B, 4, N)
out_res2 = norm_normalize(out_res2) # (B, 4, N) - normalized
out_res2 = out_res2.view(B, 4, H, W)
samples_pred_res2 = point_coords_res2 = None
################################################################################################################
# out_res1
################################################################################################################
if mode == 'train':
# upsampling ... out_res4: [2, 4, 120, 160] -> out_res4_res2: [2, 4, 240, 320]
out_res2_res1 = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
B, _, H, W = out_res2_res1.shape
# samples: [B, 1, N, 2]
point_coords_res1, rows_int, cols_int = sample_points(out_res2_res1.detach(), gt_norm_mask,
sampling_ratio=self.sampling_ratio,
beta=self.importance_ratio)
# output (needed for evaluation / visualization)
out_res1 = out_res2_res1
# grid_sample feature-map
feat_res1 = F.grid_sample(x_d4, point_coords_res1, mode='bilinear', align_corners=True) # (B, 128, 1, N)
init_pred = F.grid_sample(out_res2, point_coords_res1, mode='bilinear', align_corners=True) # (B, 4, 1, N)
feat_res1 = torch.cat([feat_res1, init_pred], dim=1) # (B, 128+4, 1, N)
# prediction (needed to compute loss)
samples_pred_res1 = self.out_conv_res1(feat_res1[:, :, 0, :]) # (B, 4, N)
samples_pred_res1 = norm_normalize(samples_pred_res1) # (B, 4, N) - normalized
for i in range(B):
out_res1[i, :, rows_int[i, :], cols_int[i, :]] = samples_pred_res1[i, :, :]
else:
# grid_sample feature-map
feat_map = F.interpolate(x_d4, scale_factor=2, mode='bilinear', align_corners=True)
init_pred = F.interpolate(out_res2, scale_factor=2, mode='bilinear', align_corners=True)
feat_map = torch.cat([feat_map, init_pred], dim=1) # (B, 512+4, H, W)
B, _, H, W = feat_map.shape
out_res1 = self.out_conv_res1(feat_map.view(B, 128 + 4, -1)) # (B, 4, N)
out_res1 = norm_normalize(out_res1) # (B, 4, N) - normalized
out_res1 = out_res1.view(B, 4, H, W)
samples_pred_res1 = point_coords_res1 = None
return [out_res8, out_res4, out_res2, out_res1], \
[out_res8, samples_pred_res4, samples_pred_res2, samples_pred_res1], \
[None, point_coords_res4, point_coords_res2, point_coords_res1]
|