File size: 6,713 Bytes
3f9c56c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
import copy
import os
import shutil

import cv2
import gradio as gr
import modules.scripts as scripts

from modules import images
from modules.processing import process_images
from modules.shared import opts
from PIL import Image

import numpy as np

_BASEDIR = "/controlnet-m2m"
_BASEFILE = "animation"

def get_all_frames(video_path):
    if video_path is None:
        return None
    cap = cv2.VideoCapture(video_path)
    frame_list = []
    if not cap.isOpened():
        return
    while True:
        ret, frame = cap.read()
        if ret:
            frame_list.append(cv2.cvtColor(frame, cv2.COLOR_BGR2RGB))
        else:
            return frame_list

def get_min_frame_num(video_list):
    min_frame_num = -1
    for video in video_list:
        if video is None:
            continue
        else:
            frame_num = len(video)
            print(frame_num)
            if min_frame_num < 0:
                min_frame_num = frame_num
            elif frame_num < min_frame_num:
                min_frame_num = frame_num
    return min_frame_num

def pil2cv(image):
  new_image = np.array(image, dtype=np.uint8)
  if new_image.ndim == 2:
      pass
  elif new_image.shape[2] == 3:
      new_image = new_image[:, :, ::-1]
  elif new_image.shape[2] == 4:
      new_image = new_image[:, :, [2, 1, 0, 3]]
  return new_image


def save_gif(path, image_list, name, duration):
    tmp_dir = path + "/tmp/" 
    if os.path.isdir(tmp_dir):
        shutil.rmtree(tmp_dir)
    os.mkdir(tmp_dir)
    for i, image in enumerate(image_list):
        images.save_image(image, tmp_dir, f"output_{i}")

    os.makedirs(f"{path}{_BASEDIR}", exist_ok=True)

    image_list[0].save(f"{path}{_BASEDIR}/{name}.gif", save_all=True, append_images=image_list[1:], optimize=False, duration=duration, loop=0)
    

class Script(scripts.Script):  
    
    def title(self):
        return "controlnet m2m"

    def show(self, is_img2img):
        return True

    def ui(self, is_img2img):
        # How the script's is displayed in the UI. See https://gradio.app/docs/#components
        # for the different UI components you can use and how to create them.
        # Most UI components can return a value, such as a boolean for a checkbox.
        # The returned values are passed to the run method as parameters.
        
        ctrls_group = ()
        max_models = opts.data.get("control_net_unit_count", 3)

        with gr.Group():
            with gr.Accordion("ControlNet-M2M", open = False):
                duration = gr.Slider(label=f"Duration", value=50.0, minimum=10.0, maximum=200.0, step=10, interactive=True, elem_id='controlnet_movie2movie_duration_slider')
                with gr.Tabs():
                    for i in range(max_models):
                        with gr.Tab(f"ControlNet-{i}"):
                            with gr.TabItem("Movie Input"):
                                ctrls_group += (gr.Video(format='mp4', source='upload', elem_id = f"video_{i}"), )
                            with gr.TabItem("Image Input"):
                                ctrls_group += (gr.Image(source='upload', brush_radius=20, mirror_webcam=False, type='numpy', tool='sketch', elem_id=f'image_{i}'), )
                            ctrls_group += (gr.Checkbox(label=f"Save preprocessed", value=False, elem_id = f"save_pre_{i}"),)        
                
        ctrls_group += (duration,)

        return ctrls_group

    def run(self, p, *args):
        # This is where the additional processing is implemented. The parameters include
        # self, the model object "p" (a StableDiffusionProcessing class, see
        # processing.py), and the parameters returned by the ui method.
        # Custom functions can be defined here, and additional libraries can be imported 
        # to be used in processing. The return value should be a Processed object, which is
        # what is returned by the process_images method.
        
        contents_num = opts.data.get("control_net_unit_count", 3)
        arg_num = 3
        item_list = []
        video_list = []
        for input_set in  [tuple(args[:contents_num * arg_num][i:i+3]) for i in range(0, len(args[:contents_num * arg_num]), arg_num)]:
            if input_set[0] is not None:
                item_list.append([get_all_frames(input_set[0]), "video"])
                video_list.append(get_all_frames(input_set[0]))
            if input_set[1] is not None:
                item_list.append([cv2.cvtColor(pil2cv(input_set[1]["image"]), cv2.COLOR_BGRA2RGB), "image"])

        save_pre = list(args[2:contents_num * arg_num:3])
        item_num = len(item_list)
        video_num = len(video_list)
        duration, = args[contents_num * arg_num:]

        frame_num = get_min_frame_num(video_list)
        if frame_num > 0:
            output_image_list = []
            pre_output_image_list = []
            for i in range(item_num):
                pre_output_image_list.append([])

            for frame in range(frame_num):
                copy_p = copy.copy(p)
                copy_p.control_net_input_image = []
                for item in item_list:
                    if item[1] == "video":
                        copy_p.control_net_input_image.append(item[0][frame])
                    elif item[1] == "image":
                        copy_p.control_net_input_image.append(item[0])
                    else:
                        continue

                proc = process_images(copy_p)
                img = proc.images[0]
                output_image_list.append(img)

                for i in range(len(save_pre)):
                    if save_pre[i]:
                        try:
                            pre_output_image_list[i].append(proc.images[i + 1])
                        except:
                            print(f"proc.images[{i} failed")

                copy_p.close()

            # filename format is seq-seed-animation.gif seq is 5 places left filled with 0

            seq = images.get_next_sequence_number(f"{p.outpath_samples}{_BASEDIR}", "")
            filename = f"{seq:05}-{proc.seed}-{_BASEFILE}"
            save_gif(p.outpath_samples, output_image_list, filename, duration)
            proc.images = [f"{p.outpath_samples}{_BASEDIR}/{filename}.gif"]


            for i in range(len(save_pre)):
                if save_pre[i]:
                    # control files add -controlX.gif where X is the controlnet number
                    save_gif(p.outpath_samples, pre_output_image_list[i], f"{filename}-control{i}", duration)
                    proc.images.append(f"{p.outpath_samples}{_BASEDIR}/{filename}-control{i}.gif")

        else:
            proc = process_images(p)
        
        return proc