|
|
|
import os |
|
import requests |
|
|
|
import torch |
|
import cv2 |
|
import numpy as np |
|
from PIL import Image |
|
from realesrgan import RealESRGANer |
|
from basicsr.archs.rrdbnet_arch import RRDBNet |
|
|
|
upsampler = None |
|
|
|
|
|
def init(): |
|
global upsampler |
|
|
|
device = "cuda" if torch.cuda.is_available() else "cpu" |
|
|
|
print("Initializing upscaler...") |
|
|
|
if not os.path.exists("weights"): |
|
os.mkdir("weights") |
|
url = 'https://github.com/xinntao/Real-ESRGAN/releases/download/v0.2.1/RealESRGAN_x2plus.pth' |
|
response = requests.get(url) |
|
with open('weights/RealESRGAN_x2plus.pth', 'wb') as f: |
|
f.write(response.content) |
|
model = RRDBNet(num_in_ch=3, num_out_ch=3, num_feat=64, |
|
num_block=23, num_grow_ch=32, scale=2) |
|
upsampler = RealESRGANer( |
|
scale=2, model_path="weights/RealESRGAN_x2plus.pth", model=model, device=device) |
|
|
|
|
|
def upscale(image): |
|
original_numpy = np.array(image) |
|
original_opencv = cv2.cvtColor(original_numpy, cv2.COLOR_RGB2BGR) |
|
|
|
output, _ = upsampler.enhance(original_opencv, outscale=2) |
|
upscaled = Image.fromarray(cv2.cvtColor(output, cv2.COLOR_BGR2RGB)) |
|
|
|
return upscaled |
|
|