Upload 3 files
Browse files- app.py +74 -0
- pdfquery.py +35 -0
- requirements.txt +6 -0
app.py
ADDED
@@ -0,0 +1,74 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import gradio as gr
|
2 |
+
import os
|
3 |
+
import time
|
4 |
+
import shutil
|
5 |
+
import base64
|
6 |
+
from pdfquery import PDFQuery
|
7 |
+
|
8 |
+
pquery = PDFQuery()
|
9 |
+
|
10 |
+
|
11 |
+
def openai_create(s):
|
12 |
+
global pquery
|
13 |
+
return pquery.ask(s)
|
14 |
+
|
15 |
+
def chatgpt_clone(input, history, chatbot):
|
16 |
+
if input == "":
|
17 |
+
return chatbot, history, ""
|
18 |
+
history = history or []
|
19 |
+
s = list(sum(history, ()))
|
20 |
+
s.append(input)
|
21 |
+
inp = ' '.join(s)
|
22 |
+
output = openai_create(input)
|
23 |
+
history.append((inp, output))
|
24 |
+
chatbot.append((input, output))
|
25 |
+
return chatbot, history, ""
|
26 |
+
|
27 |
+
|
28 |
+
title_html = f"<h1 align=\"center\">Chat With Pdf</h1>"
|
29 |
+
|
30 |
+
gr_L1 = lambda: gr.Row().style()
|
31 |
+
gr_L2 = lambda scale, elem_id: gr.Column(scale=scale, elem_id=elem_id)
|
32 |
+
|
33 |
+
|
34 |
+
def pdf_to_markdown(file_obj):
|
35 |
+
try:
|
36 |
+
shutil.rmtree('./private_upload/')
|
37 |
+
except:
|
38 |
+
pass
|
39 |
+
time_tag = time.strftime("%Y-%m-%d-%H-%M-%S", time.localtime())
|
40 |
+
os.makedirs(f'private_upload/{time_tag}', exist_ok=True)
|
41 |
+
file_name = os.path.basename(file_obj.name)
|
42 |
+
destination = f'private_upload/{time_tag}/{file_name}'
|
43 |
+
shutil.copy(file_obj.name, destination)
|
44 |
+
global pquery
|
45 |
+
pquery.ingest(destination)
|
46 |
+
with open(destination, "rb") as f:
|
47 |
+
pdf = base64.b64encode(f.read()).decode('utf-8')
|
48 |
+
pdf_display = f'<embed src="data:application/pdf;base64,{pdf}" ' \
|
49 |
+
f'width="700" height="800" type="application/pdf">'
|
50 |
+
return [pdf_display, gr.update(visible=False),gr.update(visible=True),gr.update(visible=True),gr.update(visible=True),
|
51 |
+
gr.update(visible=True),gr.update(visible=True)]
|
52 |
+
|
53 |
+
# 清空
|
54 |
+
cle = lambda :""
|
55 |
+
|
56 |
+
with gr.Blocks(title="Chat With Pdf") as demo:
|
57 |
+
gr.HTML(title_html)
|
58 |
+
file = gr.File()
|
59 |
+
with gr_L1():
|
60 |
+
with gr_L2(scale=1.5, elem_id="gpt-chat"):
|
61 |
+
out = gr.Markdown()
|
62 |
+
with gr_L2(scale=1, elem_id="gpt-chat"):
|
63 |
+
title = gr.Markdown("""<h1><center><strong>文档问答 </strong></center></h1>
|
64 |
+
""", visible=False)
|
65 |
+
chatbot = gr.Chatbot(scale=3, height=600, visible=False)
|
66 |
+
with gr_L1():
|
67 |
+
message = gr.Textbox(placeholder="Input question here.", scale=10, visible=False)
|
68 |
+
state = gr.State([])
|
69 |
+
submit = gr.Button("发送", scale=1, visible=False)
|
70 |
+
|
71 |
+
file.upload(pdf_to_markdown, file, [out, file, out, title, chatbot, message, submit])
|
72 |
+
submit.click(chatgpt_clone, inputs=[message, state, chatbot], outputs=[chatbot, state, message])
|
73 |
+
|
74 |
+
demo.launch(share=True)
|
pdfquery.py
ADDED
@@ -0,0 +1,35 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import os
|
2 |
+
from langchain.embeddings.openai import OpenAIEmbeddings
|
3 |
+
from langchain.text_splitter import RecursiveCharacterTextSplitter
|
4 |
+
from langchain.vectorstores import Chroma
|
5 |
+
from langchain.document_loaders import PyPDFium2Loader
|
6 |
+
from langchain.chains.question_answering import load_qa_chain
|
7 |
+
# from langchain.llms import OpenAI
|
8 |
+
from langchain.chat_models import ChatOpenAI
|
9 |
+
|
10 |
+
|
11 |
+
class PDFQuery:
|
12 |
+
def __init__(self):
|
13 |
+
os.environ["OPENAI_API_KEY"] = "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"
|
14 |
+
self.embeddings = OpenAIEmbeddings()
|
15 |
+
self.text_splitter = RecursiveCharacterTextSplitter(chunk_size=800, chunk_overlap=200)
|
16 |
+
# self.llm = OpenAI(temperature=0, openai_api_key=openai_api_key)
|
17 |
+
self.llm = ChatOpenAI(temperature=0)
|
18 |
+
self.chain = None
|
19 |
+
self.db = None
|
20 |
+
|
21 |
+
def ask(self, question: str) -> str:
|
22 |
+
if self.chain is None:
|
23 |
+
response = "Please, add a document."
|
24 |
+
else:
|
25 |
+
docs = self.db.get_relevant_documents(question)
|
26 |
+
response = self.chain.run(input_documents=docs, question=question)
|
27 |
+
return response
|
28 |
+
|
29 |
+
def ingest(self, file_path: os.PathLike) -> None:
|
30 |
+
loader = PyPDFium2Loader(file_path)
|
31 |
+
documents = loader.load()
|
32 |
+
splitted_documents = self.text_splitter.split_documents(documents)
|
33 |
+
self.db = Chroma.from_documents(splitted_documents, self.embeddings).as_retriever()
|
34 |
+
# self.chain = load_qa_chain(OpenAI(temperature=0), chain_type="stuff")
|
35 |
+
self.chain = load_qa_chain(ChatOpenAI(temperature=0), chain_type="stuff")
|
requirements.txt
ADDED
@@ -0,0 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
gradio
|
2 |
+
langchain
|
3 |
+
openai
|
4 |
+
pypdfium2
|
5 |
+
chromadb
|
6 |
+
tiktoken
|