import gradio as gr from PIL import Image import os import spaces from OmniGen import OmniGenPipeline pipe = OmniGenPipeline.from_pretrained( "shitao/tmp-preview" ) @spaces.GPU # 示例处理函数:生成图像 def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed): input_images = [img1, img2, img3] # 去除 None input_images = [img for img in input_images if img is not None] if len(input_images) == 0: input_images = None output = pipe( prompt=text, input_images=input_images, height=height, width=width, guidance_scale=guidance_scale, img_guidance_scale=1.6, num_inference_steps=inference_steps, separate_cfg_infer=True, use_kv_cache=False, seed=seed, ) img = output[0] return img # def generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps): # input_images = [] # if img1: # input_images.append(Image.open(img1)) # if img2: # input_images.append(Image.open(img2)) # if img3: # input_images.append(Image.open(img3)) # return input_images[0] if input_images else None def get_example(): case = [ [ "A woman holds a bouquet of flowers and faces the camera. Thw woman is the one in <|image_1|>.", "./imgs/test_cases/liuyifei.png", None, None, 1024, 1024, 3.0, 20, 42, ], [ "Three zebras are standing side by side on a vibrant savannah, each showcasing unique patterns and characteristics that highlight their individuality. The zebra on the left has a strikingly bold black and white stripe pattern, with wider stripes that create a dramatic contrast against its sleek body. In the middle, the zebra features a more subtle stripe arrangement, with thinner stripes that blend seamlessly into a slightly sandy-colored coat, giving it a softer appearance. On the right, the zebra's stripes are more irregular, with a distinct patch of brown fur near its shoulder, adding a layer of uniqueness to its overall look. Together, these zebras create a captivating scene, each representing the diverse beauty of their species in the wild. The right zebras is the zebras from <|image_1|>. The center zebras is from <|image_2|>. The left zebras is the zebras from <|image_3|>.", "./imgs/test_cases/img1.jpg", "./imgs/test_cases/img2.jpg", "./imgs/test_cases/img3.jpg", 1024, 1024, 3.0, 20, 42, ], ] return case def run_for_examples(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed): return generate_image(text, img1, img2, img3, height, width, guidance_scale, inference_steps, seed) # Gradio 接口 with gr.Blocks() as demo: gr.Markdown("# OmniGen: Unified Image Generation") with gr.Row(): with gr.Column(): # 文本输入框 prompt_input = gr.Textbox( label="Enter your prompt, use <|image_i|> tokens for images", placeholder="Type your prompt here..." ) with gr.Row(equal_height=True): # 图片上传框 image_input_1 = gr.Image(label="<|image_1|>", type="filepath") image_input_2 = gr.Image(label="<|image_2|>", type="filepath") image_input_3 = gr.Image(label="<|image_3|>", type="filepath") # 高度和宽度滑块 height_input = gr.Slider( label="Height", minimum=256, maximum=2048, value=1024, step=16 ) width_input = gr.Slider( label="Width", minimum=256, maximum=2048, value=1024, step=16 ) # 引导尺度输入 guidance_scale_input = gr.Slider( label="Guidance Scale", minimum=1.0, maximum=10.0, value=3.0, step=0.1 ) num_inference_steps = gr.Slider( label="Inference Steps", minimum=1, maximum=50, value=50, step=1 ) seed_input = gr.Slider( label="Seed", minimum=0, maximum=2147483647, value=42, step=1 ) # 生成按钮 generate_button = gr.Button("Generate Image") with gr.Column(): # 输出图像框 output_image = gr.Image(label="Output Image") # 按钮点击事件 generate_button.click( generate_image, inputs=[ prompt_input, image_input_1, image_input_2, image_input_3, height_input, width_input, guidance_scale_input, num_inference_steps, seed_input, ], outputs=output_image, ) gr.Examples( examples=get_example(), fn=run_for_examples, inputs=[ prompt_input, image_input_1, image_input_2, image_input_3, height_input, width_input, guidance_scale_input, num_inference_steps, seed_input, ], outputs=output_image, ) # 启动应用 demo.launch()