import gradio as gr from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM tokenizer = AutoTokenizer.from_pretrained("csebuetnlp/banglat5_nmt_bn_en", use_fast=False) model = AutoModelForSeq2SeqLM.from_pretrained("csebuetnlp/banglat5_nmt_bn_en") pipe = pipeline("translation", model=model, tokenizer=tokenizer) def translate(text): translation = pipe(text)[0]['translation_text'] return translation interface = gr.Interface( fn=translate, inputs=gr.Textbox(label="Input Text in Bangla"), # Updated here outputs=gr.Textbox(label="Translated Text in English"), # Updated here title="Bangla to English Translator", description="Translate Bangla text into English using a Hugging Face model." ) if __name__ == "__main__": interface.launch()