LipSyncApi / utils /alignment_stit.py
Shadhil's picture
Upload 340 files
0b5f327 verified
import PIL
import PIL.Image
import dlib
import face_alignment
import numpy as np
import scipy
import scipy.ndimage
import skimage.io as io
import torch
from PIL import Image
from scipy.ndimage import gaussian_filter1d
from tqdm import tqdm
# from configs import paths_config
def paste_image(inverse_transform, img, orig_image):
pasted_image = orig_image.copy().convert('RGBA')
projected = img.convert('RGBA').transform(orig_image.size, Image.PERSPECTIVE, inverse_transform, Image.BILINEAR)
pasted_image.paste(projected, (0, 0), mask=projected)
return pasted_image
def get_landmark(filepath, predictor, detector=None, fa=None):
"""get landmark with dlib
:return: np.array shape=(68, 2)
"""
if fa is not None:
image = io.imread(filepath)
lms, _, bboxes = fa.get_landmarks(image, return_bboxes=True)
if len(lms) == 0:
return None
return lms[0]
if detector is None:
detector = dlib.get_frontal_face_detector()
if isinstance(filepath, PIL.Image.Image):
img = np.array(filepath)
else:
img = dlib.load_rgb_image(filepath)
dets = detector(img)
for k, d in enumerate(dets):
shape = predictor(img, d)
break
else:
return None
t = list(shape.parts())
a = []
for tt in t:
a.append([tt.x, tt.y])
lm = np.array(a)
return lm
def align_face(filepath_or_image, predictor, output_size, detector=None,
enable_padding=False, scale=1.0):
"""
:param filepath: str
:return: PIL Image
"""
c, x, y = compute_transform(filepath_or_image, predictor, detector=detector,
scale=scale)
quad = np.stack([c - x - y, c - x + y, c + x + y, c + x - y])
img = crop_image(filepath_or_image, output_size, quad, enable_padding=enable_padding)
# Return aligned image.
return img
def crop_image(filepath, output_size, quad, enable_padding=False):
x = (quad[3] - quad[1]) / 2
qsize = np.hypot(*x) * 2
# read image
if isinstance(filepath, PIL.Image.Image):
img = filepath
else:
img = PIL.Image.open(filepath)
transform_size = output_size
# Shrink.
shrink = int(np.floor(qsize / output_size * 0.5))
if shrink > 1:
rsize = (int(np.rint(float(img.size[0]) / shrink)), int(np.rint(float(img.size[1]) / shrink)))
img = img.resize(rsize, PIL.Image.ANTIALIAS)
quad /= shrink
qsize /= shrink
# Crop.
border = max(int(np.rint(qsize * 0.1)), 3)
crop = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
crop = (max(crop[0] - border, 0), max(crop[1] - border, 0), min(crop[2] + border, img.size[0]),
min(crop[3] + border, img.size[1]))
if (crop[2] - crop[0] < img.size[0] or crop[3] - crop[1] < img.size[1]):
img = img.crop(crop)
quad -= crop[0:2]
# Pad.
pad = (int(np.floor(min(quad[:, 0]))), int(np.floor(min(quad[:, 1]))), int(np.ceil(max(quad[:, 0]))),
int(np.ceil(max(quad[:, 1]))))
pad = (max(-pad[0] + border, 0), max(-pad[1] + border, 0), max(pad[2] - img.size[0] + border, 0),
max(pad[3] - img.size[1] + border, 0))
if enable_padding and max(pad) > border - 4:
pad = np.maximum(pad, int(np.rint(qsize * 0.3)))
img = np.pad(np.float32(img), ((pad[1], pad[3]), (pad[0], pad[2]), (0, 0)), 'reflect')
h, w, _ = img.shape
y, x, _ = np.ogrid[:h, :w, :1]
mask = np.maximum(1.0 - np.minimum(np.float32(x) / pad[0], np.float32(w - 1 - x) / pad[2]),
1.0 - np.minimum(np.float32(y) / pad[1], np.float32(h - 1 - y) / pad[3]))
blur = qsize * 0.02
img += (scipy.ndimage.gaussian_filter(img, [blur, blur, 0]) - img) * np.clip(mask * 3.0 + 1.0, 0.0, 1.0)
img += (np.median(img, axis=(0, 1)) - img) * np.clip(mask, 0.0, 1.0)
img = PIL.Image.fromarray(np.uint8(np.clip(np.rint(img), 0, 255)), 'RGB')
quad += pad[:2]
# Transform.
img = img.transform((transform_size, transform_size), PIL.Image.QUAD, (quad + 0.5).flatten(), PIL.Image.BILINEAR)
if output_size < transform_size:
img = img.resize((output_size, output_size), PIL.Image.ANTIALIAS)
return img
def compute_transform(lm, predictor, detector=None, scale=1.0, fa=None):
# lm = get_landmark(filepath, predictor, detector, fa)
# if lm is None:
# raise Exception(f'Did not detect any faces in image: {filepath}')
lm_chin = lm[0: 17] # left-right
lm_eyebrow_left = lm[17: 22] # left-right
lm_eyebrow_right = lm[22: 27] # left-right
lm_nose = lm[27: 31] # top-down
lm_nostrils = lm[31: 36] # top-down
lm_eye_left = lm[36: 42] # left-clockwise
lm_eye_right = lm[42: 48] # left-clockwise
lm_mouth_outer = lm[48: 60] # left-clockwise
lm_mouth_inner = lm[60: 68] # left-clockwise
# Calculate auxiliary vectors.
eye_left = np.mean(lm_eye_left, axis=0)
eye_right = np.mean(lm_eye_right, axis=0)
eye_avg = (eye_left + eye_right) * 0.5
eye_to_eye = eye_right - eye_left
mouth_left = lm_mouth_outer[0]
mouth_right = lm_mouth_outer[6]
mouth_avg = (mouth_left + mouth_right) * 0.5
eye_to_mouth = mouth_avg - eye_avg
# Choose oriented crop rectangle.
x = eye_to_eye - np.flipud(eye_to_mouth) * [-1, 1]
x /= np.hypot(*x)
x *= max(np.hypot(*eye_to_eye) * 2.0, np.hypot(*eye_to_mouth) * 1.8)
x *= scale
y = np.flipud(x) * [-1, 1]
c = eye_avg + eye_to_mouth * 0.1
return c, x, y
def crop_faces(IMAGE_SIZE, files, scale, center_sigma=0.0, xy_sigma=0.0, use_fa=False, fa=None):
if use_fa:
if fa == None:
device = 'cuda' if torch.cuda.is_available() else 'cpu'
fa = face_alignment.FaceAlignment(face_alignment.LandmarksType._2D, flip_input=True, device=device)
predictor = None
detector = None
else:
fa = None
predictor = None
detector = None
# predictor = dlib.shape_predictor(paths_config.shape_predictor_path)
# detector = dlib.get_frontal_face_detector()
cs, xs, ys = [], [], []
for lm, pil in tqdm(files):
c, x, y = compute_transform(lm, predictor, detector=detector,
scale=scale, fa=fa)
cs.append(c)
xs.append(x)
ys.append(y)
cs = np.stack(cs)
xs = np.stack(xs)
ys = np.stack(ys)
if center_sigma != 0:
cs = gaussian_filter1d(cs, sigma=center_sigma, axis=0)
if xy_sigma != 0:
xs = gaussian_filter1d(xs, sigma=xy_sigma, axis=0)
ys = gaussian_filter1d(ys, sigma=xy_sigma, axis=0)
quads = np.stack([cs - xs - ys, cs - xs + ys, cs + xs + ys, cs + xs - ys], axis=1)
quads = list(quads)
crops, orig_images = crop_faces_by_quads(IMAGE_SIZE, files, quads)
return crops, orig_images, quads
def crop_faces_by_quads(IMAGE_SIZE, files, quads):
orig_images = []
crops = []
for quad, (_, path) in tqdm(zip(quads, files), total=len(quads)):
crop = crop_image(path, IMAGE_SIZE, quad.copy())
orig_image = path # Image.open(path)
orig_images.append(orig_image)
crops.append(crop)
return crops, orig_images
def calc_alignment_coefficients(pa, pb):
matrix = []
for p1, p2 in zip(pa, pb):
matrix.append([p1[0], p1[1], 1, 0, 0, 0, -p2[0] * p1[0], -p2[0] * p1[1]])
matrix.append([0, 0, 0, p1[0], p1[1], 1, -p2[1] * p1[0], -p2[1] * p1[1]])
a = np.matrix(matrix, dtype=float)
b = np.array(pb).reshape(8)
res = np.dot(np.linalg.inv(a.T * a) * a.T, b)
return np.array(res).reshape(8)