Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
@@ -1,37 +1,44 @@
|
|
1 |
import tempfile
|
2 |
import torch
|
|
|
|
|
3 |
import torchaudio
|
4 |
import gradio as gr
|
5 |
-
from transformers import Wav2Vec2FeatureExtractor,AutoConfig
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
config = AutoConfig.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
|
8 |
model = Wav2Vec2FeatureExtractor.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
|
9 |
|
10 |
-
|
11 |
-
|
12 |
-
# Copy the contents of the uploaded audio file to the temporary file
|
13 |
-
temp_audio_file.write(open(path, "rb").read())
|
14 |
-
temp_audio_file.flush()
|
15 |
-
# Load the audio file using torchaudio
|
16 |
-
speech_array, _sampling_rate = torchaudio.load(temp_audio_file.name)
|
17 |
-
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
18 |
-
speech = resampler(speech_array).squeeze().numpy()
|
19 |
-
return speech
|
20 |
|
21 |
-
def
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
|
|
|
|
|
|
|
|
28 |
|
29 |
-
|
30 |
-
|
31 |
-
return outputs
|
32 |
|
33 |
-
|
34 |
-
|
|
|
35 |
|
36 |
-
iface = gr.Interface(fn=SER, inputs=
|
37 |
iface.launch(share=False)
|
|
|
1 |
import tempfile
|
2 |
import torch
|
3 |
+
import torch.nn as nn
|
4 |
+
import torch.nn.functional as F
|
5 |
import torchaudio
|
6 |
import gradio as gr
|
7 |
+
from transformers import Wav2Vec2FeatureExtractor,AutoConfig
|
8 |
+
from torch.nn import BCEWithLogitsLoss, CrossEntropyLoss, MSELoss
|
9 |
+
from transformers.models.wav2vec2.modeling_wav2vec2 import (
|
10 |
+
Wav2Vec2PreTrainedModel,
|
11 |
+
Wav2Vec2Model
|
12 |
+
)
|
13 |
+
from transformers.models.hubert.modeling_hubert import (
|
14 |
+
HubertPreTrainedModel,
|
15 |
+
HubertModel
|
16 |
+
)
|
17 |
|
18 |
config = AutoConfig.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
|
19 |
model = Wav2Vec2FeatureExtractor.from_pretrained("SeyedAli/Persian-Speech-Emotion-HuBert-V1")
|
20 |
|
21 |
+
audio_input = gr.Audio(label="صوت گفتار فارسی",type="filepath")
|
22 |
+
text_output = gr.TextArea(label="هیجان موجود در صوت گفتار",text_align="right",rtl=True,type="text")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
23 |
|
24 |
+
def SER(audio):
|
25 |
+
with tempfile.NamedTemporaryFile(suffix=".wav") as temp_audio_file:
|
26 |
+
# Copy the contents of the uploaded audio file to the temporary file
|
27 |
+
temp_audio_file.write(open(audio, "rb").read())
|
28 |
+
temp_audio_file.flush()
|
29 |
+
# Load the audio file using torchaudio
|
30 |
+
speech_array, _sampling_rate = torchaudio.load(temp_audio_file.name)
|
31 |
+
resampler = torchaudio.transforms.Resample(_sampling_rate)
|
32 |
+
speech = resampler(speech_array).squeeze().numpy()
|
33 |
+
inputs = model(speech, sampling_rate=sampling_rate, return_tensors="pt", padding=True)
|
34 |
+
inputs = {key: inputs[key].to(device) for key in inputs}
|
35 |
|
36 |
+
with torch.no_grad():
|
37 |
+
logits = model(**inputs).logits
|
|
|
38 |
|
39 |
+
scores = F.softmax(logits, dim=1).detach().cpu().numpy()[0]
|
40 |
+
outputs = [{"Label": config.id2label[i], "Score": f"{round(score * 100, 3):.1f}%"} for i, score in enumerate(scores)]
|
41 |
+
return outputs
|
42 |
|
43 |
+
iface = gr.Interface(fn=SER, inputs=audio_input, outputs=text_output)
|
44 |
iface.launch(share=False)
|