SeyedAli commited on
Commit
23e6b97
1 Parent(s): 319c17a

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +8 -5
app.py CHANGED
@@ -1,20 +1,23 @@
1
  import gradio as gr
2
  from PIL import Image
3
  import torch
 
4
  from transformers import ViTImageProcessor,pipeline
5
 
6
  model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
7
 
8
  def FoodClassification(image):
 
9
  # Encode your PIL Image as a JPEG without writing to disk
10
- buffer = io.BytesIO(image)
11
- YourImage.save(buffer, format='JPEG', quality=75)
12
 
13
- # You probably want
14
- desiredObject = buffer.getbuffer()
15
 
16
  pipline = pipeline(task="image-classification", model=model)
17
- output=pipline(model(Image.open(desiredObject), return_tensors='pt'))
 
18
  return output
19
 
20
  iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")
 
1
  import gradio as gr
2
  from PIL import Image
3
  import torch
4
+ from torchvision.io import read_image
5
  from transformers import ViTImageProcessor,pipeline
6
 
7
  model = ViTImageProcessor.from_pretrained('SeyedAli/Food-Image-Classification-VIT')
8
 
9
  def FoodClassification(image):
10
+ image = read_image(image)
11
  # Encode your PIL Image as a JPEG without writing to disk
12
+ # buffer = io.BytesIO(image)
13
+ # YourImage.save(buffer, format='JPEG', quality=75)
14
 
15
+ # # You probably want
16
+ # desiredObject = buffer.getbuffer()
17
 
18
  pipline = pipeline(task="image-classification", model=model)
19
+ #output=pipline(model(Image.open(desiredObject), return_tensors='pt'))
20
+ output=pipline(image, return_tensors='pt'))
21
  return output
22
 
23
  iface = gr.Interface(fn=FoodClassification, inputs="image", outputs="text")