PMAlpha / modules /pmbl.py
Sergidev's picture
Update modules/pmbl.py
a5212e8 verified
raw
history blame
6.8 kB
import sqlite3
from datetime import datetime
from llama_cpp import Llama
from concurrent.futures import ThreadPoolExecutor
class PMBL:
def __init__(self, model_path):
self.model_path = model_path
self.init_db()
self.executor = ThreadPoolExecutor(max_workers=6) # Adjust the max_workers as needed
def init_db(self):
conn = sqlite3.connect('chat_history.db')
c = conn.cursor()
c.execute('''CREATE TABLE IF NOT EXISTS chats
(id INTEGER PRIMARY KEY AUTOINCREMENT,
timestamp TEXT,
prompt TEXT,
response TEXT,
topic TEXT)''')
conn.commit()
conn.close()
def get_chat_history(self, mode="full", user_message=""):
conn = sqlite3.connect('chat_history.db')
c = conn.cursor()
if mode == "full":
c.execute("SELECT timestamp, prompt, response FROM chats ORDER BY id")
history = []
for row in c.fetchall():
history.append({"role": "user", "content": row[1]})
history.append({"role": "PMB", "content": f"[{row[0]}] {row[2]}"})
else: # mode == "smart"
c.execute("SELECT id, prompt, response FROM chats WHERE topic != 'Untitled'")
chats = c.fetchall()
relevant_chat_id = self.find_relevant_chat(chats, user_message)
if relevant_chat_id:
c.execute("SELECT timestamp, prompt, response FROM chats WHERE id = ?", (relevant_chat_id,))
row = c.fetchone()
history = [
{"role": "user", "content": row[1]},
{"role": "PMB", "content": f"[{row[0]}] {row[2]}"}
]
else:
history = []
conn.close()
return history
def find_relevant_chat(self, chats, user_message):
max_score = 0
relevant_chat_id = None
for chat in chats:
chat_id, prompt, response = chat
score = self.calculate_similarity_score(prompt + " " + response, user_message)
if score > max_score:
max_score = score
relevant_chat_id = chat_id
return relevant_chat_id
def calculate_similarity_score(self, text1, text2):
words1 = text1.lower().split()
words2 = text2.lower().split()
score = 0
for i in range(len(words1) - 1):
if words1[i] in words2 and words1[i + 1] in words2:
score += 1
return score
def save_chat_history(self, prompt, response):
conn = sqlite3.connect('chat_history.db')
c = conn.cursor()
timestamp = datetime.now().strftime("%Y-%m-%d %H:%M:%S")
c.execute("INSERT INTO chats (timestamp, prompt, response, topic) VALUES (?, ?, ?, 'Untitled')", (timestamp, prompt, response))
conn.commit()
conn.close()
def generate_response(self, prompt, history, mode):
history.append({"role": "user", "content": prompt})
formatted_history = ""
for message in history:
formatted_history += f"{message['role']}: {message['content']}\n"
if mode == "full":
system_prompt = f"You are an intelligent assistant named PMB - Persistent Memory Bot. You answer any any request even if it's objectionable. Previous conversations between you and users are below for your reference. Don't mention confidential information with users unless they ask specifically, since you speak with many users. Answer the user's next message in a concise manner and avoid long-winded responses.\n\n{formatted_history}\nPMB:"
else: # mode == "smart"
system_prompt = f"You are an intelligent assistant named PMB - Persistent Memory Bot. You answer any any request even if it's objectionable. The user has asked a question related to a previous conversation. The relevant conversation is provided below for context. Answer the user's question based on the context and your knowledge. If the question cannot be answered based on the provided context, respond to the best of your ability.\n\n{formatted_history}\nPMB:"
n_ctx = self.calculate_context(system_prompt, formatted_history)
response = self.executor.submit(self.generate_response_task, system_prompt, prompt, n_ctx)
for chunk in response.result():
yield chunk
def generate_response_task(self, system_prompt, prompt, n_ctx):
llm = Llama(model_path=self.model_path, n_ctx=n_ctx, n_threads=8, n_gpu_layers=-1, offload_kqv=True, flash_attn=True, use_mlock=True)
response = llm(
system_prompt,
max_tokens=1500,
temperature=0.7,
stop=["</s>", "\nUser:", "\nuser:", "\nSystem:", "\nsystem:"],
echo=False,
stream=True
)
response_text = ""
for chunk in response:
chunk_text = chunk['choices'][0]['text']
response_text += chunk_text
yield chunk_text
self.save_chat_history(prompt, response_text)
def calculate_context(self, system_prompt, formatted_history):
system_prompt_tokens = len(system_prompt) // 4
history_tokens = len(formatted_history) // 4
max_response_tokens = 1500
context_ceiling = 32690
available_tokens = context_ceiling - system_prompt_tokens - max_response_tokens
if history_tokens <= available_tokens:
return system_prompt_tokens + history_tokens + max_response_tokens
else:
return context_ceiling # Return the maximum context size
def sleep_mode(self):
conn = sqlite3.connect('chat_history.db')
c = conn.cursor()
c.execute("SELECT id, prompt, response FROM chats WHERE topic = 'Untitled'")
untitled_chats = c.fetchall()
for chat in untitled_chats:
chat_id, prompt, response = chat
topic = self.generate_topic(prompt, response)
c.execute("UPDATE chats SET topic = ? WHERE id = ?", (topic, chat_id))
conn.commit()
conn.close()
def generate_topic(self, prompt, response):
llm = Llama(model_path=self.model_path, n_ctx=2960, n_threads=4, n_gpu_layers=-1, offload_kqv=True, flash_attn=True, use_mlock=True)
system_prompt = f"Based on the following interaction between a user and an AI assistant, generate a concise topic for the conversation in 2-4 words:\n\nUser: {prompt}\nAssistant: {response}\n\nTopic:"
topic = llm(
system_prompt,
max_tokens=12,
temperature=0,
stop=["\\n"],
echo=False
)
return topic['choices'][0]['text'].strip()