import gc import os import random import numpy as np import json import torch from PIL import Image, PngImagePlugin from datetime import datetime from typing import Dict, Optional, Tuple from diffusers import ( DDIMScheduler, DPMSolverMultistepScheduler, DPMSolverSinglestepScheduler, EulerAncestralDiscreteScheduler, EulerDiscreteScheduler, ) MAX_SEED = np.iinfo(np.int32).max def randomize_seed_fn(seed: int, randomize_seed: bool) -> int: if randomize_seed: seed = random.randint(0, MAX_SEED) return seed def seed_everything(seed: int) -> torch.Generator: torch.manual_seed(seed) torch.cuda.manual_seed_all(seed) np.random.seed(seed) generator = torch.Generator() generator.manual_seed(seed) return generator def parse_aspect_ratio(aspect_ratio: str) -> Optional[Tuple[int, int]]: if aspect_ratio == "Custom": return None width, height = aspect_ratio.split(" x ") return int(width), int(height) def aspect_ratio_handler(aspect_ratio: str, custom_width: int, custom_height: int) -> Tuple[int, int]: if aspect_ratio == "Custom": return custom_width, custom_height else: width, height = parse_aspect_ratio(aspect_ratio) return width, height def get_scheduler(scheduler_config: Dict, name: str) -> Optional[DDIMScheduler]: scheduler_factory_map = { "DPM++ 2M Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True), "DPM++ SDE Karras": lambda: DPMSolverSinglestepScheduler.from_config(scheduler_config, use_karras_sigmas=True), "DPM++ 2M SDE Karras": lambda: DPMSolverMultistepScheduler.from_config(scheduler_config, use_karras_sigmas=True, algorithm_type="sde-dpmsolver++"), "Euler": lambda: EulerDiscreteScheduler.from_config(scheduler_config), "Euler a": lambda: EulerAncestralDiscreteScheduler.from_config(scheduler_config), "DDIM": lambda: DDIMScheduler.from_config(scheduler_config), } return scheduler_factory_map.get(name, lambda: None)() def free_memory() -> None: torch.cuda.empty_cache() gc.collect() def common_upscale(samples: torch.Tensor, width: int, height: int, upscale_method: str) -> torch.Tensor: return torch.nn.functional.interpolate(samples, size=(height, width), mode=upscale_method) def upscale(samples: torch.Tensor, upscale_method: str, scale_by: float) -> torch.Tensor: width = round(samples.shape[3] * scale_by) height = round(samples.shape[2] * scale_by) return common_upscale(samples, width, height, upscale_method) def preprocess_image_dimensions(width, height): if width % 8 != 0: width = width - (width % 8) if height % 8 != 0: height = height - (height % 8) return width, height def save_image(image, metadata, output_dir): current_time = datetime.now().strftime("%Y%m%d_%H%M%S") os.makedirs(output_dir, exist_ok=True) filename = f"image_{current_time}.png" filepath = os.path.join(output_dir, filename) metadata_str = json.dumps(metadata) info = PngImagePlugin.PngInfo() info.add_text("metadata", metadata_str) image.save(filepath, "PNG", pnginfo=info) return filepath def is_google_colab(): try: import google.colab return True except: return False def get_image_metadata(image_path): try: with Image.open(image_path) as img: metadata = img.info.get('metadata', '{}') return json.loads(metadata) except Exception as e: print(f"Error reading metadata from {image_path}: {str(e)}") return {} def validate_json_parameters(json_str): try: params = json.loads(json_str) required_keys = ['prompt', 'negative_prompt', 'resolution', 'guidance_scale', 'num_inference_steps', 'seed', 'sampler'] for key in required_keys: if key not in params: raise ValueError(f"Missing required key: {key}") return params except json.JSONDecodeError: raise ValueError("Invalid JSON format") except Exception as e: raise ValueError(f"Error parsing JSON: {str(e)}")