Spaces:
Sleeping
Sleeping
app
Browse files- app.py +135 -0
- requirements.txt +0 -0
app.py
ADDED
@@ -0,0 +1,135 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
import pandas as pd
|
3 |
+
import torch
|
4 |
+
import numpy as np
|
5 |
+
from transformers import AutoTokenizer, AutoModel
|
6 |
+
import faiss
|
7 |
+
from streamlit.errors import StreamlitAPIException
|
8 |
+
import urllib.parse
|
9 |
+
|
10 |
+
|
11 |
+
|
12 |
+
import os
|
13 |
+
os.environ['KMP_DUPLICATE_LIB_OK'] = 'TRUE'
|
14 |
+
|
15 |
+
# Load model and tokenizer
|
16 |
+
model_name = "sentence-transformers/msmarco-distilbert-base-v3"
|
17 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
18 |
+
model = AutoModel.from_pretrained(model_name)
|
19 |
+
|
20 |
+
# Load data
|
21 |
+
books = pd.read_csv('data/data_final_version.csv')
|
22 |
+
|
23 |
+
MAX_LEN = 300
|
24 |
+
|
25 |
+
def embed_bert_cls(text, model=model, tokenizer=tokenizer):
|
26 |
+
t = tokenizer(text,
|
27 |
+
padding=True,
|
28 |
+
truncation=True,
|
29 |
+
return_tensors='pt',
|
30 |
+
max_length=MAX_LEN)
|
31 |
+
with torch.no_grad():
|
32 |
+
model_output = model(**{k: v.to(model.device) for k, v in t.items()})
|
33 |
+
embeddings = model_output.last_hidden_state[:, 0, :]
|
34 |
+
embeddings = torch.nn.functional.normalize(embeddings)
|
35 |
+
return embeddings[0].cpu().squeeze()
|
36 |
+
|
37 |
+
# Load embeddings
|
38 |
+
embeddings = np.loadtxt('models/embeddings.txt')
|
39 |
+
embeddings_tensor = [torch.tensor(embedding) for embedding in embeddings]
|
40 |
+
|
41 |
+
# Create Faiss index
|
42 |
+
embeddings_matrix = np.stack(embeddings)
|
43 |
+
index = faiss.IndexFlatIP(embeddings_matrix.shape[1])
|
44 |
+
index.add(embeddings_matrix)
|
45 |
+
|
46 |
+
|
47 |
+
# CSS стили для заднего фона
|
48 |
+
background_image = """
|
49 |
+
<style>
|
50 |
+
.stApp {
|
51 |
+
background-image: url("https://img.freepik.com/premium-photo/blur-image-book_9563-1100.jpg");
|
52 |
+
background-size: cover;
|
53 |
+
background-position: center;
|
54 |
+
background-repeat: no-repeat;
|
55 |
+
}
|
56 |
+
</style>
|
57 |
+
"""
|
58 |
+
|
59 |
+
# Вставляем CSS стили в приложение Streamlit
|
60 |
+
st.markdown(background_image, unsafe_allow_html=True)
|
61 |
+
|
62 |
+
|
63 |
+
# Вставляем CSS стили для окошка с прозрачным фоном
|
64 |
+
transparent_title = """
|
65 |
+
<style>
|
66 |
+
.transparent-title {
|
67 |
+
background-color: rgba(255, 255, 255, 0.7);
|
68 |
+
padding: 10px;
|
69 |
+
border-radius: 5px;
|
70 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
71 |
+
}
|
72 |
+
</style>
|
73 |
+
"""
|
74 |
+
|
75 |
+
transparent_box = """
|
76 |
+
<style>
|
77 |
+
.transparent-box {
|
78 |
+
background-color: rgba(255, 255, 255, 0.7);
|
79 |
+
padding: 10px;
|
80 |
+
border-radius: 5px;
|
81 |
+
box-shadow: 0px 0px 10px rgba(0, 0, 0, 0.1);
|
82 |
+
}
|
83 |
+
</style>
|
84 |
+
"""
|
85 |
+
|
86 |
+
# Вставляем CSS стили в приложение Streamlit
|
87 |
+
st.markdown(transparent_title, unsafe_allow_html=True)
|
88 |
+
st.markdown(transparent_box, unsafe_allow_html=True)
|
89 |
+
|
90 |
+
# Streamlit interface
|
91 |
+
st.markdown('<h1 class="transparent-title">🎓📚Приложение для рекомендаций книг📚🎓</h1>', unsafe_allow_html=True)
|
92 |
+
|
93 |
+
# Далее ваш код Streamlit
|
94 |
+
text = st.text_input('Введите ваш запрос для поиска книг:')
|
95 |
+
num_results = st.number_input('Количество результатов:', min_value=1, max_value=20, value=3)
|
96 |
+
recommend_button = st.button('Получить рекомендации')
|
97 |
+
|
98 |
+
|
99 |
+
if text and recommend_button: # Check if the user entered text and clicked the button
|
100 |
+
|
101 |
+
# Embed the query and search for nearest vectors using Faiss
|
102 |
+
query_embedding = embed_bert_cls(text)
|
103 |
+
query_embedding = query_embedding.numpy().astype('float32')
|
104 |
+
_, indices = index.search(np.expand_dims(query_embedding, axis=0), num_results)
|
105 |
+
|
106 |
+
st.subheader('Рекомендации по вашему запросу:')
|
107 |
+
for i in indices[0]:
|
108 |
+
recommended_embedding = embeddings_tensor[i].numpy() # Vector of the recommended book
|
109 |
+
similarity = np.dot(query_embedding, recommended_embedding) / (np.linalg.norm(query_embedding) * np.linalg.norm(recommended_embedding)) # Cosine similarity
|
110 |
+
similarity_percent = similarity * 100
|
111 |
+
|
112 |
+
col1, col2 = st.columns([1, 3])
|
113 |
+
with col1:
|
114 |
+
image_url = books['image_url'][i]
|
115 |
+
if pd.isna(image_url) or not image_url or image_url.strip() == '':
|
116 |
+
st.write("Обложка не найдена")
|
117 |
+
else:
|
118 |
+
try:
|
119 |
+
st.image(image_url, use_column_width=True)
|
120 |
+
except Exception as e:
|
121 |
+
st.write("Обложка не найдена")
|
122 |
+
st.write(e)
|
123 |
+
|
124 |
+
with col2:
|
125 |
+
# Выводим информацию о книге на прозрачном фоне
|
126 |
+
st.markdown(f"""
|
127 |
+
<div class="transparent-box">
|
128 |
+
<p><b>Название книги:</b> {books['title'][i]}</p>
|
129 |
+
<p><b>Автор:</b> {books['author'][i]}</p>
|
130 |
+
<p><b>Описание:</b>{books['annotation'][i]}")
|
131 |
+
<p><b>Оценка сходства:</b> {similarity_percent:.2f}%</p>
|
132 |
+
</div>
|
133 |
+
""", unsafe_allow_html=True)
|
134 |
+
|
135 |
+
st.write("---")
|
requirements.txt
ADDED
File without changes
|