Spaces:
Running
Running
File size: 1,529 Bytes
468dd54 ca55736 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 |
import streamlit as st
from PIL import Image
import pytesseract
import re
def highlight_text(text, keyword):
escaped_key = re.escape(keyword)
highlighted_text = re.sub(f'({escaped_key})', r'<mark>\1</mark>', text, flags = re.IGNORECASE)
return highlighted_text
st.title('OCR Document Search Web App')
st.divider()
_ = '''
def got_ocr(image_path):
from transformers import AutoModel, AutoTokenizer
tokenizer = AutoTokenizer.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True)
model = AutoModel.from_pretrained("stepfun-ai/GOT-OCR2_0", trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
model=model.eval().cuda()
image = Image.open(image_path)
res = model.chat(tokenizer, image, ocr_type='ocr')
return res
'''
uploaded_img = st.file_uploader('Upload an image', type=['jpg', 'jpeg', 'png'])
if uploaded_img is not None:
image = Image.open(uploaded_img)
st.image(image, caption='Uploaded image', use_column_width=True)
extracted_text = pytesseract.image_to_string(image, lang='eng+hin')
st.subheader('Extracted text')
st.divider()
st.text(extracted_text)
st.divider()
search_query = st.text_input('Enter a keyword to search in the extracted text - ')
if search_query:
highlighted_text = highlight_text(extracted_text, search_query)
st.subheader('Text with Highlighted Keyword')
st.markdown(highlighted_text, unsafe_allow_html=True) |