import torch import clip from glob import glob from PIL import Image import termcolor device = "cuda" if torch.cuda.is_available() else "cpu" model, preprocess = clip.load("ViT-B/32", device=device) model.eval() # use termcolor to print the model print(f"Using device: {termcolor.colored(device, 'green')}, model: {termcolor.colored('ViT-B/32', 'green')}") template_dir = "character_template" char_info = { "character_template/e.png": "鄂", "character_template/gui.png": "桂", "character_template/hei.png": "黑", "character_template/ji.png": "冀", "character_template/gui1.png": "贵", "character_template/jing.png": "京", "character_template/lu.png": "鲁", "character_template/min.png": "闽", "character_template/su.png": "苏", "character_template/wan.png": "皖", "character_template/yu.png": "豫", "character_template/yue.png": "粤", "character_template/xin.png": "新", } char_list = list(char_info.values()) character_tensor_list = None for template_path in char_info.keys(): character_image = preprocess(Image.open(template_path)).unsqueeze(0).to(device) if character_tensor_list is None: character_tensor_list = character_image else: character_tensor_list = torch.cat((character_tensor_list, character_image), dim=0) print(f"Support Chinese characters: {termcolor.colored(char_list, 'blue')}") def recognize_chinese_char(image: Image.Image, image_path: str=None, print_probs=False): if image_path is not None: image = Image.open(image_path).convert('RGB') image = preprocess(image).unsqueeze(0).to(device) with torch.no_grad(): image_features = model.encode_image(image) char_features = model.encode_image(character_tensor_list) image_features = image_features / image_features.norm(dim=1, keepdim=True) char_features = char_features / char_features.norm(dim=1, keepdim=True) logit_scale = model.logit_scale.exp() logits_per_image = logit_scale * image_features @ char_features.t() logits_per_char = logits_per_image.t() probs = logits_per_image.softmax(dim=-1).cpu().numpy() if print_probs: prob_dict = dict(zip(char_list, probs[0])) print(f"Label probs: {termcolor.colored(prob_dict, 'red')}") char_index = probs.argmax() return char_list[char_index] if __name__ == "__main__": image_list = glob(f"cut_plate/left_*.jpg") + glob(f"cut_plate/left_*.png") for image_path in image_list: print(image_path, recognize_chinese_char(None, image_path))