import numpy as np import cv2 import torch from PIL import Image import termcolor from glob import glob template_dir = "character_template" char_info = { "character_template/e.png": "鄂", "character_template/gui.png": "桂", "character_template/hei.png": "黑", "character_template/ji.png": "冀", "character_template/gui1.png": "贵", "character_template/jing.png": "京", "character_template/lu.png": "鲁", "character_template/min.png": "闽", "character_template/su.png": "苏", "character_template/wan.png": "皖", "character_template/yu.png": "豫", "character_template/yue.png": "粤", "character_template/xin.png": "新", "character_template/chuan.jpg": "川", "character_template/ji1.jpg": "吉", "character_template/jin.jpg": "津", "character_template/liao.jpg": "辽", "character_template/shan.jpg": "陕", "character_template/zhe.jpg": "浙", "character_template/meng.jpg": "蒙", } char_list = list(char_info.values()) character_image_list = [] for template_path in char_info.keys(): character_image = Image.open(template_path).convert('RGB') character_image_list.append(character_image) print(f"Support Chinese characters: {termcolor.colored(char_list, 'blue')}") def calculate_correlation(image1: Image.Image, image2: Image.Image): image1 = np.array(image1) image2 = np.array(image2) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0])) image1_flat = image1.flatten() image2_flat = image2.flatten() correlation = np.corrcoef(image1_flat, image2_flat)[0, 1] return correlation def calculate_sift(image1: Image.Image, image2: Image.Image): image1 = np.array(image1) image2 = np.array(image2) image1 = cv2.cvtColor(image1, cv2.COLOR_BGR2GRAY) image2 = cv2.cvtColor(image2, cv2.COLOR_BGR2GRAY) image2 = cv2.resize(image2, (image1.shape[1], image1.shape[0])) sift = cv2.SIFT_create() kp1, des1 = sift.detectAndCompute(image1, None) kp2, des2 = sift.detectAndCompute(image2, None) bf = cv2.BFMatcher() matches = bf.knnMatch(des1, des2, k=2) good = [] for m, n in matches: if m.distance < 0.75 * n.distance: good.append(m) src_pts = np.float32([kp1[m.queryIdx].pt for m in good]).reshape(-1, 1, 2) dst_pts = np.float32([kp2[m.trainIdx].pt for m in good]).reshape(-1, 1, 2) if len(good) < 4: return len(good) homography, mask = cv2.findHomography(src_pts, dst_pts, cv2.RANSAC, 5.0) inlier_matches = [m for i, m in enumerate(good) if mask[i] == 1] return len(inlier_matches) def recognize_chinese_char(image: Image.Image, image_path: str=None, print_probs=False): if image_path is not None: image = Image.open(image_path).convert('RGB') score_list = [] for character_image in character_image_list: score_list.append(calculate_sift(image, character_image)) char_index = np.array(score_list).argmax() if print_probs: prob_dict = dict(zip(char_list, score_list)) print(f"Label probs: {termcolor.colored(prob_dict, 'red')}") return char_list[char_index] if __name__ == "__main__": img_paths = glob(f"cut_plate/*.jpg") + glob(f"cut_plate/*.png") + glob(f"cut_plate/*.jpeg") for image_path in img_paths: print(image_path, recognize_chinese_char(None, image_path))