license_plate_recognition / utils /oneshot_recognize.py
zxbsmk's picture
Duplicate from zxbsmk/license_plate_recognition
d94f42d
import torch
import clip
from glob import glob
from PIL import Image
import termcolor
device = "cuda" if torch.cuda.is_available() else "cpu"
model, preprocess = clip.load("ViT-B/32", device=device)
model.eval()
# use termcolor to print the model
print(f"Using device: {termcolor.colored(device, 'green')}, model: {termcolor.colored('ViT-B/32', 'green')}")
template_dir = "character_template"
char_info = {
"character_template/e.png": "鄂", "character_template/gui.png": "桂",
"character_template/hei.png": "黑", "character_template/ji.png": "冀",
"character_template/gui1.png": "贵", "character_template/jing.png": "京",
"character_template/lu.png": "鲁", "character_template/min.png": "闽",
"character_template/su.png": "苏", "character_template/wan.png": "皖",
"character_template/yu.png": "豫", "character_template/yue.png": "粤",
"character_template/xin.png": "新",
}
char_list = list(char_info.values())
character_tensor_list = None
for template_path in char_info.keys():
character_image = preprocess(Image.open(template_path)).unsqueeze(0).to(device)
if character_tensor_list is None:
character_tensor_list = character_image
else:
character_tensor_list = torch.cat((character_tensor_list, character_image), dim=0)
print(f"Support Chinese characters: {termcolor.colored(char_list, 'blue')}")
def recognize_chinese_char(image: Image.Image, image_path: str=None, print_probs=False):
if image_path is not None:
image = Image.open(image_path).convert('RGB')
image = preprocess(image).unsqueeze(0).to(device)
with torch.no_grad():
image_features = model.encode_image(image)
char_features = model.encode_image(character_tensor_list)
image_features = image_features / image_features.norm(dim=1, keepdim=True)
char_features = char_features / char_features.norm(dim=1, keepdim=True)
logit_scale = model.logit_scale.exp()
logits_per_image = logit_scale * image_features @ char_features.t()
logits_per_char = logits_per_image.t()
probs = logits_per_image.softmax(dim=-1).cpu().numpy()
if print_probs:
prob_dict = dict(zip(char_list, probs[0]))
print(f"Label probs: {termcolor.colored(prob_dict, 'red')}")
char_index = probs.argmax()
return char_list[char_index]
if __name__ == "__main__":
image_list = glob(f"cut_plate/left_*.jpg") + glob(f"cut_plate/left_*.png")
for image_path in image_list:
print(image_path, recognize_chinese_char(None, image_path))