hysts HF staff commited on
Commit
f2c9715
1 Parent(s): d7dad51
Files changed (5) hide show
  1. .pre-commit-config.yaml +59 -36
  2. .style.yapf +0 -5
  3. .vscode/settings.json +30 -0
  4. app.py +38 -53
  5. model.py +42 -66
.pre-commit-config.yaml CHANGED
@@ -1,37 +1,60 @@
1
- exclude: ^stylegan3
2
  repos:
3
- - repo: https://github.com/pre-commit/pre-commit-hooks
4
- rev: v4.2.0
5
- hooks:
6
- - id: check-executables-have-shebangs
7
- - id: check-json
8
- - id: check-merge-conflict
9
- - id: check-shebang-scripts-are-executable
10
- - id: check-toml
11
- - id: check-yaml
12
- - id: double-quote-string-fixer
13
- - id: end-of-file-fixer
14
- - id: mixed-line-ending
15
- args: ['--fix=lf']
16
- - id: requirements-txt-fixer
17
- - id: trailing-whitespace
18
- - repo: https://github.com/myint/docformatter
19
- rev: v1.4
20
- hooks:
21
- - id: docformatter
22
- args: ['--in-place']
23
- - repo: https://github.com/pycqa/isort
24
- rev: 5.12.0
25
- hooks:
26
- - id: isort
27
- - repo: https://github.com/pre-commit/mirrors-mypy
28
- rev: v0.991
29
- hooks:
30
- - id: mypy
31
- args: ['--ignore-missing-imports']
32
- additional_dependencies: ['types-python-slugify']
33
- - repo: https://github.com/google/yapf
34
- rev: v0.32.0
35
- hooks:
36
- - id: yapf
37
- args: ['--parallel', '--in-place']
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  repos:
2
+ - repo: https://github.com/pre-commit/pre-commit-hooks
3
+ rev: v4.6.0
4
+ hooks:
5
+ - id: check-executables-have-shebangs
6
+ - id: check-json
7
+ - id: check-merge-conflict
8
+ - id: check-shebang-scripts-are-executable
9
+ - id: check-toml
10
+ - id: check-yaml
11
+ - id: end-of-file-fixer
12
+ - id: mixed-line-ending
13
+ args: ["--fix=lf"]
14
+ - id: requirements-txt-fixer
15
+ - id: trailing-whitespace
16
+ - repo: https://github.com/myint/docformatter
17
+ rev: v1.7.5
18
+ hooks:
19
+ - id: docformatter
20
+ args: ["--in-place"]
21
+ - repo: https://github.com/pycqa/isort
22
+ rev: 5.13.2
23
+ hooks:
24
+ - id: isort
25
+ args: ["--profile", "black"]
26
+ - repo: https://github.com/pre-commit/mirrors-mypy
27
+ rev: v1.10.0
28
+ hooks:
29
+ - id: mypy
30
+ args: ["--ignore-missing-imports"]
31
+ additional_dependencies:
32
+ [
33
+ "types-python-slugify",
34
+ "types-requests",
35
+ "types-PyYAML",
36
+ "types-pytz",
37
+ ]
38
+ - repo: https://github.com/psf/black
39
+ rev: 24.4.2
40
+ hooks:
41
+ - id: black
42
+ language_version: python3.10
43
+ args: ["--line-length", "119"]
44
+ - repo: https://github.com/kynan/nbstripout
45
+ rev: 0.7.1
46
+ hooks:
47
+ - id: nbstripout
48
+ args:
49
+ [
50
+ "--extra-keys",
51
+ "metadata.interpreter metadata.kernelspec cell.metadata.pycharm",
52
+ ]
53
+ - repo: https://github.com/nbQA-dev/nbQA
54
+ rev: 1.8.5
55
+ hooks:
56
+ - id: nbqa-black
57
+ - id: nbqa-pyupgrade
58
+ args: ["--py37-plus"]
59
+ - id: nbqa-isort
60
+ args: ["--float-to-top"]
.style.yapf DELETED
@@ -1,5 +0,0 @@
1
- [style]
2
- based_on_style = pep8
3
- blank_line_before_nested_class_or_def = false
4
- spaces_before_comment = 2
5
- split_before_logical_operator = true
 
 
 
 
 
 
.vscode/settings.json ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "editor.formatOnSave": true,
3
+ "files.insertFinalNewline": false,
4
+ "[python]": {
5
+ "editor.defaultFormatter": "ms-python.black-formatter",
6
+ "editor.formatOnType": true,
7
+ "editor.codeActionsOnSave": {
8
+ "source.organizeImports": "explicit"
9
+ }
10
+ },
11
+ "[jupyter]": {
12
+ "files.insertFinalNewline": false
13
+ },
14
+ "black-formatter.args": [
15
+ "--line-length=119"
16
+ ],
17
+ "isort.args": ["--profile", "black"],
18
+ "flake8.args": [
19
+ "--max-line-length=119"
20
+ ],
21
+ "ruff.lint.args": [
22
+ "--line-length=119"
23
+ ],
24
+ "notebook.output.scrolling": true,
25
+ "notebook.formatOnCellExecution": true,
26
+ "notebook.formatOnSave.enabled": true,
27
+ "notebook.codeActionsOnSave": {
28
+ "source.organizeImports": "explicit"
29
+ }
30
+ }
app.py CHANGED
@@ -9,101 +9,86 @@ import numpy as np
9
 
10
  from model import Model
11
 
12
- DESCRIPTION = '# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)'
13
 
14
 
15
  def get_sample_image_url(name: str) -> str:
16
- sample_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples'
17
- return f'{sample_image_dir}/{name}.jpg'
18
 
19
 
20
  def get_sample_image_markdown(name: str) -> str:
21
  url = get_sample_image_url(name)
22
- size = name.split('_')[1]
23
- truncation_type = '_'.join(name.split('_')[2:])
24
- return f'''
25
  - size: {size}x{size}
26
  - seed: 0-99
27
  - truncation: 0.7
28
  - truncation type: {truncation_type}
29
- ![sample images]({url})'''
30
 
31
 
32
  def get_cluster_center_image_url(model_name: str) -> str:
33
- cluster_center_image_dir = 'https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images'
34
- return f'{cluster_center_image_dir}/{model_name}.jpg'
 
 
35
 
36
 
37
  def get_cluster_center_image_markdown(model_name: str) -> str:
38
  url = get_cluster_center_image_url(model_name)
39
- return f'![cluster center images]({url})'
40
 
41
 
42
  model = Model()
43
 
44
- with gr.Blocks(css='style.css') as demo:
45
  gr.Markdown(DESCRIPTION)
46
 
47
  with gr.Tabs():
48
- with gr.TabItem('App'):
49
  with gr.Row():
50
  with gr.Column():
51
  with gr.Group():
52
- model_name = gr.Dropdown(label='Model',
53
- choices=model.MODEL_NAMES,
54
- value=model.MODEL_NAMES[0])
55
- seed = gr.Slider(label='Seed',
56
- minimum=0,
57
- maximum=np.iinfo(np.uint32).max,
58
- step=1,
59
- value=0)
60
- psi = gr.Slider(label='Truncation psi',
61
- minimum=0,
62
- maximum=2,
63
- step=0.05,
64
- value=0.7)
65
  truncation_type = gr.Dropdown(
66
- label='Truncation Type',
67
- choices=model.TRUNCATION_TYPES,
68
- value=model.TRUNCATION_TYPES[0])
69
- run_button = gr.Button('Run')
70
  with gr.Column():
71
- result = gr.Image(label='Result', elem_id='result')
72
 
73
- with gr.TabItem('Sample Images'):
74
  with gr.Row():
75
- paths = sorted(pathlib.Path('samples').glob('*'))
76
  names = [path.stem for path in paths]
77
- model_name2 = gr.Dropdown(label='Type',
78
- choices=names,
79
- value='dogs_1024_multimodal_lpips')
80
  with gr.Row():
81
  text = get_sample_image_markdown(model_name2.value)
82
  sample_images = gr.Markdown(text)
83
 
84
- with gr.TabItem('Cluster Center Images'):
85
  with gr.Row():
86
- model_name3 = gr.Dropdown(label='Model',
87
- choices=model.MODEL_NAMES,
88
- value=model.MODEL_NAMES[0])
89
  with gr.Row():
90
  text = get_cluster_center_image_markdown(model_name3.value)
91
  cluster_center_images = gr.Markdown(value=text)
92
 
93
  model_name.change(fn=model.set_model, inputs=model_name)
94
- run_button.click(fn=model.set_model_and_generate_image,
95
- inputs=[
96
- model_name,
97
- seed,
98
- psi,
99
- truncation_type,
100
- ],
101
- outputs=result)
102
- model_name2.change(fn=get_sample_image_markdown,
103
- inputs=model_name2,
104
- outputs=sample_images)
105
- model_name3.change(fn=get_cluster_center_image_markdown,
106
- inputs=model_name3,
107
- outputs=cluster_center_images)
108
 
109
  demo.queue(max_size=10).launch()
 
9
 
10
  from model import Model
11
 
12
+ DESCRIPTION = "# [Self-Distilled StyleGAN](https://github.com/self-distilled-stylegan/self-distilled-internet-photos)"
13
 
14
 
15
  def get_sample_image_url(name: str) -> str:
16
+ sample_image_dir = "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/samples"
17
+ return f"{sample_image_dir}/{name}.jpg"
18
 
19
 
20
  def get_sample_image_markdown(name: str) -> str:
21
  url = get_sample_image_url(name)
22
+ size = name.split("_")[1]
23
+ truncation_type = "_".join(name.split("_")[2:])
24
+ return f"""
25
  - size: {size}x{size}
26
  - seed: 0-99
27
  - truncation: 0.7
28
  - truncation type: {truncation_type}
29
+ ![sample images]({url})"""
30
 
31
 
32
  def get_cluster_center_image_url(model_name: str) -> str:
33
+ cluster_center_image_dir = (
34
+ "https://huggingface.co/spaces/hysts/Self-Distilled-StyleGAN/resolve/main/cluster_center_images"
35
+ )
36
+ return f"{cluster_center_image_dir}/{model_name}.jpg"
37
 
38
 
39
  def get_cluster_center_image_markdown(model_name: str) -> str:
40
  url = get_cluster_center_image_url(model_name)
41
+ return f"![cluster center images]({url})"
42
 
43
 
44
  model = Model()
45
 
46
+ with gr.Blocks(css="style.css") as demo:
47
  gr.Markdown(DESCRIPTION)
48
 
49
  with gr.Tabs():
50
+ with gr.TabItem("App"):
51
  with gr.Row():
52
  with gr.Column():
53
  with gr.Group():
54
+ model_name = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0])
55
+ seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.uint32).max, step=1, value=0)
56
+ psi = gr.Slider(label="Truncation psi", minimum=0, maximum=2, step=0.05, value=0.7)
 
 
 
 
 
 
 
 
 
 
57
  truncation_type = gr.Dropdown(
58
+ label="Truncation Type", choices=model.TRUNCATION_TYPES, value=model.TRUNCATION_TYPES[0]
59
+ )
60
+ run_button = gr.Button("Run")
 
61
  with gr.Column():
62
+ result = gr.Image(label="Result", elem_id="result")
63
 
64
+ with gr.TabItem("Sample Images"):
65
  with gr.Row():
66
+ paths = sorted(pathlib.Path("samples").glob("*"))
67
  names = [path.stem for path in paths]
68
+ model_name2 = gr.Dropdown(label="Type", choices=names, value="dogs_1024_multimodal_lpips")
 
 
69
  with gr.Row():
70
  text = get_sample_image_markdown(model_name2.value)
71
  sample_images = gr.Markdown(text)
72
 
73
+ with gr.TabItem("Cluster Center Images"):
74
  with gr.Row():
75
+ model_name3 = gr.Dropdown(label="Model", choices=model.MODEL_NAMES, value=model.MODEL_NAMES[0])
 
 
76
  with gr.Row():
77
  text = get_cluster_center_image_markdown(model_name3.value)
78
  cluster_center_images = gr.Markdown(value=text)
79
 
80
  model_name.change(fn=model.set_model, inputs=model_name)
81
+ run_button.click(
82
+ fn=model.set_model_and_generate_image,
83
+ inputs=[
84
+ model_name,
85
+ seed,
86
+ psi,
87
+ truncation_type,
88
+ ],
89
+ outputs=result,
90
+ )
91
+ model_name2.change(fn=get_sample_image_markdown, inputs=model_name2, outputs=sample_images)
92
+ model_name3.change(fn=get_cluster_center_image_markdown, inputs=model_name3, outputs=cluster_center_images)
 
 
93
 
94
  demo.queue(max_size=10).launch()
model.py CHANGED
@@ -11,7 +11,7 @@ import torch.nn as nn
11
  from huggingface_hub import hf_hub_download
12
 
13
  current_dir = pathlib.Path(__file__).parent
14
- submodule_dir = current_dir / 'stylegan3'
15
  sys.path.insert(0, submodule_dir.as_posix())
16
 
17
 
@@ -29,11 +29,10 @@ class LPIPS(lpips.LPIPS):
29
  return [lpips.normalize_tensor(x) for x in data]
30
 
31
  @torch.inference_mode()
32
- def compute_distance(self, features0: list[torch.Tensor],
33
- features1: list[torch.Tensor]) -> float:
34
  res = 0
35
  for lin, x0, x1 in zip(self.lins, features0, features1):
36
- d = (x0 - x1)**2
37
  y = lin(d)
38
  y = lpips.lpips.spatial_average(y)
39
  res += y.item()
@@ -43,23 +42,22 @@ class LPIPS(lpips.LPIPS):
43
  class Model:
44
 
45
  MODEL_NAMES = [
46
- 'dogs_1024',
47
- 'elephants_512',
48
- 'horses_256',
49
- 'bicycles_256',
50
- 'lions_512',
51
- 'giraffes_512',
52
- 'parrots_512',
53
  ]
54
  TRUNCATION_TYPES = [
55
- 'Multimodal (LPIPS)',
56
- 'Multimodal (L2)',
57
- 'Global',
58
  ]
59
 
60
  def __init__(self):
61
- self.device = torch.device(
62
- 'cuda:0' if torch.cuda.is_available() else 'cpu')
63
  self._download_all_models()
64
  self._download_all_cluster_centers()
65
  self._download_all_cluster_center_images()
@@ -67,32 +65,27 @@ class Model:
67
  self.model_name = self.MODEL_NAMES[0]
68
  self.model = self._load_model(self.model_name)
69
  self.cluster_centers = self._load_cluster_centers(self.model_name)
70
- self.cluster_center_images = self._load_cluster_center_images(
71
- self.model_name)
72
 
73
  self.lpips = LPIPS()
74
- self.cluster_center_lpips_feature_dict = self._compute_cluster_center_lpips_features(
75
- )
76
 
77
  def _load_model(self, model_name: str) -> nn.Module:
78
- path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
79
- f'models/{model_name}_pytorch.pkl')
80
- with open(path, 'rb') as f:
81
- model = pickle.load(f)['G_ema']
82
  model.eval()
83
  model.to(self.device)
84
  return model
85
 
86
  def _load_cluster_centers(self, model_name: str) -> torch.Tensor:
87
- path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
88
- f'cluster_centers/{model_name}.npy')
89
  centers = np.load(path)
90
  centers = torch.from_numpy(centers).float().to(self.device)
91
  return centers
92
 
93
  def _load_cluster_center_images(self, model_name: str) -> np.ndarray:
94
- path = hf_hub_download('public-data/Self-Distilled-StyleGAN',
95
- f'cluster_center_images/{model_name}.npy')
96
  return np.load(path)
97
 
98
  def set_model(self, model_name: str) -> None:
@@ -101,8 +94,7 @@ class Model:
101
  self.model_name = model_name
102
  self.model = self._load_model(model_name)
103
  self.cluster_centers = self._load_cluster_centers(model_name)
104
- self.cluster_center_images = self._load_cluster_center_images(
105
- model_name)
106
 
107
  def _download_all_models(self):
108
  for name in self.MODEL_NAMES:
@@ -118,9 +110,7 @@ class Model:
118
 
119
  def generate_z(self, seed: int) -> torch.Tensor:
120
  seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
121
- return torch.from_numpy(
122
- np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to(
123
- self.device)
124
 
125
  def compute_w(self, z: torch.Tensor) -> torch.Tensor:
126
  label = torch.zeros((1, self.model.c_dim), device=self.device)
@@ -128,8 +118,7 @@ class Model:
128
  return w
129
 
130
  @staticmethod
131
- def truncate_w(w_center: torch.Tensor, w: torch.Tensor,
132
- psi: float) -> torch.Tensor:
133
  if psi == 1:
134
  return w
135
  return w_center.lerp(w, psi)
@@ -139,67 +128,54 @@ class Model:
139
  return self.model.synthesis(w)
140
 
141
  def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
142
- tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(
143
- torch.uint8)
144
  return tensor.cpu().numpy()
145
 
146
  def compute_lpips_features(self, image: np.ndarray) -> list[torch.Tensor]:
147
  data = self.lpips.preprocess(image)
148
  return self.lpips.compute_features(data)
149
 
150
- def _compute_cluster_center_lpips_features(
151
- self) -> dict[str, list[list[torch.Tensor]]]:
152
  res = dict()
153
  for name in self.MODEL_NAMES:
154
  images = self._load_cluster_center_images(name)
155
- res[name] = [
156
- self.compute_lpips_features(image) for image in images
157
- ]
158
  return res
159
 
160
- def compute_distance_to_cluster_centers(
161
- self, ws: torch.Tensor, distance_type: str) -> list[torch.Tensor]:
162
- if distance_type == 'l2':
163
  return self._compute_l2_distance_to_cluster_centers(ws)
164
- elif distance_type == 'lpips':
165
  return self._compute_lpips_distance_to_cluster_centers(ws)
166
  else:
167
  raise ValueError
168
 
169
- def _compute_l2_distance_to_cluster_centers(
170
- self, ws: torch.Tensor) -> np.ndarray:
171
- dist2 = ((self.cluster_centers - ws[0, 0])**2).sum(dim=1)
172
  return dist2.cpu().numpy()
173
 
174
- def _compute_lpips_distance_to_cluster_centers(
175
- self, ws: torch.Tensor) -> np.ndarray:
176
  x = self.synthesize(ws)
177
  x = self.postprocess(x)[0]
178
  feat0 = self.compute_lpips_features(x)
179
- cluster_center_features = self.cluster_center_lpips_feature_dict[
180
- self.model_name]
181
- distances = [
182
- self.lpips.compute_distance(feat0, feat1)
183
- for feat1 in cluster_center_features
184
- ]
185
  return np.asarray(distances)
186
 
187
- def find_nearest_cluster_center(self, ws: torch.Tensor,
188
- distance_type: str) -> int:
189
  distances = self.compute_distance_to_cluster_centers(ws, distance_type)
190
  return int(np.argmin(distances))
191
 
192
- def generate_image(self, seed: int, truncation_psi: float,
193
- truncation_type: str) -> np.ndarray:
194
  z = self.generate_z(seed)
195
  ws = self.compute_w(z)
196
  if truncation_type == self.TRUNCATION_TYPES[2]:
197
  w0 = self.model.mapping.w_avg
198
  else:
199
  if truncation_type == self.TRUNCATION_TYPES[0]:
200
- distance_type = 'lpips'
201
  elif truncation_type == self.TRUNCATION_TYPES[1]:
202
- distance_type = 'l2'
203
  else:
204
  raise ValueError
205
  cluster_index = self.find_nearest_cluster_center(ws, distance_type)
@@ -209,8 +185,8 @@ class Model:
209
  out = self.postprocess(out)
210
  return out[0]
211
 
212
- def set_model_and_generate_image(self, model_name: str, seed: int,
213
- truncation_psi: float,
214
- truncation_type: str) -> np.ndarray:
215
  self.set_model(model_name)
216
  return self.generate_image(seed, truncation_psi, truncation_type)
 
11
  from huggingface_hub import hf_hub_download
12
 
13
  current_dir = pathlib.Path(__file__).parent
14
+ submodule_dir = current_dir / "stylegan3"
15
  sys.path.insert(0, submodule_dir.as_posix())
16
 
17
 
 
29
  return [lpips.normalize_tensor(x) for x in data]
30
 
31
  @torch.inference_mode()
32
+ def compute_distance(self, features0: list[torch.Tensor], features1: list[torch.Tensor]) -> float:
 
33
  res = 0
34
  for lin, x0, x1 in zip(self.lins, features0, features1):
35
+ d = (x0 - x1) ** 2
36
  y = lin(d)
37
  y = lpips.lpips.spatial_average(y)
38
  res += y.item()
 
42
  class Model:
43
 
44
  MODEL_NAMES = [
45
+ "dogs_1024",
46
+ "elephants_512",
47
+ "horses_256",
48
+ "bicycles_256",
49
+ "lions_512",
50
+ "giraffes_512",
51
+ "parrots_512",
52
  ]
53
  TRUNCATION_TYPES = [
54
+ "Multimodal (LPIPS)",
55
+ "Multimodal (L2)",
56
+ "Global",
57
  ]
58
 
59
  def __init__(self):
60
+ self.device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
 
61
  self._download_all_models()
62
  self._download_all_cluster_centers()
63
  self._download_all_cluster_center_images()
 
65
  self.model_name = self.MODEL_NAMES[0]
66
  self.model = self._load_model(self.model_name)
67
  self.cluster_centers = self._load_cluster_centers(self.model_name)
68
+ self.cluster_center_images = self._load_cluster_center_images(self.model_name)
 
69
 
70
  self.lpips = LPIPS()
71
+ self.cluster_center_lpips_feature_dict = self._compute_cluster_center_lpips_features()
 
72
 
73
  def _load_model(self, model_name: str) -> nn.Module:
74
+ path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"models/{model_name}_pytorch.pkl")
75
+ with open(path, "rb") as f:
76
+ model = pickle.load(f)["G_ema"]
 
77
  model.eval()
78
  model.to(self.device)
79
  return model
80
 
81
  def _load_cluster_centers(self, model_name: str) -> torch.Tensor:
82
+ path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_centers/{model_name}.npy")
 
83
  centers = np.load(path)
84
  centers = torch.from_numpy(centers).float().to(self.device)
85
  return centers
86
 
87
  def _load_cluster_center_images(self, model_name: str) -> np.ndarray:
88
+ path = hf_hub_download("public-data/Self-Distilled-StyleGAN", f"cluster_center_images/{model_name}.npy")
 
89
  return np.load(path)
90
 
91
  def set_model(self, model_name: str) -> None:
 
94
  self.model_name = model_name
95
  self.model = self._load_model(model_name)
96
  self.cluster_centers = self._load_cluster_centers(model_name)
97
+ self.cluster_center_images = self._load_cluster_center_images(model_name)
 
98
 
99
  def _download_all_models(self):
100
  for name in self.MODEL_NAMES:
 
110
 
111
  def generate_z(self, seed: int) -> torch.Tensor:
112
  seed = int(np.clip(seed, 0, np.iinfo(np.uint32).max))
113
+ return torch.from_numpy(np.random.RandomState(seed).randn(1, self.model.z_dim)).float().to(self.device)
 
 
114
 
115
  def compute_w(self, z: torch.Tensor) -> torch.Tensor:
116
  label = torch.zeros((1, self.model.c_dim), device=self.device)
 
118
  return w
119
 
120
  @staticmethod
121
+ def truncate_w(w_center: torch.Tensor, w: torch.Tensor, psi: float) -> torch.Tensor:
 
122
  if psi == 1:
123
  return w
124
  return w_center.lerp(w, psi)
 
128
  return self.model.synthesis(w)
129
 
130
  def postprocess(self, tensor: torch.Tensor) -> np.ndarray:
131
+ tensor = (tensor.permute(0, 2, 3, 1) * 127.5 + 128).clamp(0, 255).to(torch.uint8)
 
132
  return tensor.cpu().numpy()
133
 
134
  def compute_lpips_features(self, image: np.ndarray) -> list[torch.Tensor]:
135
  data = self.lpips.preprocess(image)
136
  return self.lpips.compute_features(data)
137
 
138
+ def _compute_cluster_center_lpips_features(self) -> dict[str, list[list[torch.Tensor]]]:
 
139
  res = dict()
140
  for name in self.MODEL_NAMES:
141
  images = self._load_cluster_center_images(name)
142
+ res[name] = [self.compute_lpips_features(image) for image in images]
 
 
143
  return res
144
 
145
+ def compute_distance_to_cluster_centers(self, ws: torch.Tensor, distance_type: str) -> list[torch.Tensor]:
146
+ if distance_type == "l2":
 
147
  return self._compute_l2_distance_to_cluster_centers(ws)
148
+ elif distance_type == "lpips":
149
  return self._compute_lpips_distance_to_cluster_centers(ws)
150
  else:
151
  raise ValueError
152
 
153
+ def _compute_l2_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray:
154
+ dist2 = ((self.cluster_centers - ws[0, 0]) ** 2).sum(dim=1)
 
155
  return dist2.cpu().numpy()
156
 
157
+ def _compute_lpips_distance_to_cluster_centers(self, ws: torch.Tensor) -> np.ndarray:
 
158
  x = self.synthesize(ws)
159
  x = self.postprocess(x)[0]
160
  feat0 = self.compute_lpips_features(x)
161
+ cluster_center_features = self.cluster_center_lpips_feature_dict[self.model_name]
162
+ distances = [self.lpips.compute_distance(feat0, feat1) for feat1 in cluster_center_features]
 
 
 
 
163
  return np.asarray(distances)
164
 
165
+ def find_nearest_cluster_center(self, ws: torch.Tensor, distance_type: str) -> int:
 
166
  distances = self.compute_distance_to_cluster_centers(ws, distance_type)
167
  return int(np.argmin(distances))
168
 
169
+ def generate_image(self, seed: int, truncation_psi: float, truncation_type: str) -> np.ndarray:
 
170
  z = self.generate_z(seed)
171
  ws = self.compute_w(z)
172
  if truncation_type == self.TRUNCATION_TYPES[2]:
173
  w0 = self.model.mapping.w_avg
174
  else:
175
  if truncation_type == self.TRUNCATION_TYPES[0]:
176
+ distance_type = "lpips"
177
  elif truncation_type == self.TRUNCATION_TYPES[1]:
178
+ distance_type = "l2"
179
  else:
180
  raise ValueError
181
  cluster_index = self.find_nearest_cluster_center(ws, distance_type)
 
185
  out = self.postprocess(out)
186
  return out[0]
187
 
188
+ def set_model_and_generate_image(
189
+ self, model_name: str, seed: int, truncation_psi: float, truncation_type: str
190
+ ) -> np.ndarray:
191
  self.set_model(model_name)
192
  return self.generate_image(seed, truncation_psi, truncation_type)