Spaces:
Running
on
Zero
Running
on
Zero
import gradio as gr | |
import spaces | |
import torch | |
from diffusers import DiffusionPipeline | |
from PIL import Image | |
# Text-to-Multi-View Diffusion pipeline | |
text_pipeline = DiffusionPipeline.from_pretrained( | |
"dylanebert/mvdream", | |
custom_pipeline="dylanebert/multi-view-diffusion", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
).to("cuda") | |
# Image-to-Multi-View Diffusion pipeline | |
image_pipeline = DiffusionPipeline.from_pretrained( | |
"dylanebert/multi-view-diffusion", | |
custom_pipeline="dylanebert/multi-view-diffusion", | |
torch_dtype=torch.float16, | |
trust_remote_code=True, | |
).to("cuda") | |
def create_image_grid(images): | |
images = [Image.fromarray((img * 255).astype("uint8")) for img in images] | |
width, height = images[0].size | |
grid_img = Image.new("RGB", (2 * width, 2 * height)) | |
grid_img.paste(images[0], (0, 0)) | |
grid_img.paste(images[1], (width, 0)) | |
grid_img.paste(images[2], (0, height)) | |
grid_img.paste(images[3], (width, height)) | |
return grid_img | |
def text_to_mv(prompt): | |
images = text_pipeline( | |
prompt, guidance_scale=5, num_inference_steps=30, elevation=0 | |
) | |
return create_image_grid(images) | |
def image_to_mv(image, prompt): | |
image = image.astype("float32") / 255.0 | |
images = image_pipeline( | |
prompt, image, guidance_scale=5, num_inference_steps=30, elevation=0 | |
) | |
return create_image_grid(images) | |
with gr.Blocks() as demo: | |
with gr.Row(): | |
with gr.Column(): | |
with gr.Tab("Text Input"): | |
text_input = gr.Textbox( | |
lines=2, | |
show_label=False, | |
placeholder="Enter a prompt here (e.g. 'a cat statue')", | |
) | |
text_btn = gr.Button("Generate Multi-View Images") | |
with gr.Tab("Image Input"): | |
image_input = gr.Image( | |
label="Image Input", | |
type="numpy", | |
) | |
optional_text_input = gr.Textbox( | |
lines=2, | |
show_label=False, | |
placeholder="Enter an optional prompt here", | |
) | |
image_btn = gr.Button("Generate Multi-View Images") | |
with gr.Column(): | |
output = gr.Image(label="Generated Images") | |
text_btn.click(fn=text_to_mv, inputs=text_input, outputs=output) | |
image_btn.click( | |
fn=image_to_mv, inputs=[image_input, optional_text_input], outputs=output | |
) | |
if __name__ == "__main__": | |
demo.queue().launch() |