from typing import * import math from collections import namedtuple import numpy as np import torch import torch.nn as nn import torch.nn.functional as F import torch.types import utils3d from .tools import timeit from .geometry_numpy import solve_optimal_shift_focal def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.mean(dim=dim, keepdim=keepdim) else: w = w.to(x.dtype) return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps) def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal() else: w = w.to(x.dtype) return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal() def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor: if w is None: return x.add(eps).log().mean(dim=dim).exp() else: w = w.to(x.dtype) return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp() def image_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor: "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)" if aspect_ratio is None: aspect_ratio = width / height span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5 u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device) v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device) u, v = torch.meshgrid(u, v, indexing='xy') uv = torch.stack([u, v], dim=-1) return uv def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor: kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2)) kernel = kernel / kernel.sum() kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size) input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate') input = F.conv2d(input, kernel, groups=input.shape[1]) return input def split_batch_fwd(fn: Callable, chunk_size: int, *args, **kwargs): batch_size = next(x for x in (*args, *kwargs.values()) if isinstance(x, torch.Tensor)).shape[0] n_chunks = batch_size // chunk_size + (batch_size % chunk_size > 0) splited_args = tuple(arg.split(chunk_size, dim=0) if isinstance(arg, torch.Tensor) else [arg] * n_chunks for arg in args) splited_kwargs = {k: [v.split(chunk_size, dim=0) if isinstance(v, torch.Tensor) else [v] * n_chunks] for k, v in kwargs.items()} results = [] for i in range(n_chunks): chunk_args = tuple(arg[i] for arg in splited_args) chunk_kwargs = {k: v[i] for k, v in splited_kwargs.items()} results.append(fn(*chunk_args, **chunk_kwargs)) if isinstance(results[0], tuple): return tuple(torch.cat(r, dim=0) for r in zip(*results)) else: return torch.cat(results, dim=0) def focal_to_fov(focal: torch.Tensor): return 2 * torch.atan(0.5 / focal) def fov_to_focal(fov: torch.Tensor): return 0.5 / torch.tan(fov / 2) def intrinsics_to_fov(intrinsics: torch.Tensor): """ Returns field of view in radians from normalized intrinsics matrix. ### Parameters: - intrinsics: torch.Tensor of shape (..., 3, 3) ### Returns: - fov_x: torch.Tensor of shape (...) - fov_y: torch.Tensor of shape (...) """ focal_x = intrinsics[..., 0, 0] focal_y = intrinsics[..., 1, 1] return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y) def point_map_to_depth_legacy(points: torch.Tensor): height, width = points.shape[-3:-1] diagonal = (height ** 2 + width ** 2) ** 0.5 uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2) # Solve least squares problem b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2) A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2) M = A.transpose(-2, -1) @ A solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1) focal, shift = solution.unbind(-1) depth = points[..., 2] + shift[..., None, None] fov_x = torch.atan(width / diagonal / focal) * 2 fov_y = torch.atan(height / diagonal / focal) * 2 return depth, fov_x, fov_y, shift def point_map_to_depth(points: torch.Tensor, mask: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)): """ Recover the depth map and FoV from a point map with unknown z shift and focal. Note that it assumes: - the optical center is at the center of the map - the map is undistorted - the map is isometric in the x and y directions ### Parameters: - `points: torch.Tensor` of shape (..., H, W, 3) - `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps. ### Returns: - `depth: torch.Tensor` of shape (..., H, W) - `fov_x: torch.Tensor` of shape (...) - `fov_y: torch.Tensor` of shape (...) - `shift: torch.Tensor` of shape (...), the z shift, making `depth = points[..., 2] + shift` """ shape = points.shape height, width = points.shape[-3], points.shape[-2] diagonal = (height ** 2 + width ** 2) ** 0.5 points = points.reshape(-1, *shape[-3:]) mask = None if mask is None else mask.reshape(-1, *shape[-3:-1]) uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2) points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1) uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0) mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0 uv_lr_np = uv_lr.cpu().numpy() points_lr_np = points_lr.detach().cpu().numpy() mask_lr_np = None if mask is None else mask_lr.cpu().numpy() optim_shift, optim_focal = [], [] for i in range(points.shape[0]): points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]] uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]] optim_shift_i, optim_focal_i = solve_optimal_shift_focal(uv_lr_i_np, points_lr_i_np, ransac_iters=None) optim_shift.append(float(optim_shift_i)) optim_focal.append(float(optim_focal_i)) optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype) optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype) fov_x = 2 * torch.atan(width / diagonal / optim_focal) fov_y = 2 * torch.atan(height / diagonal / optim_focal) depth = (points[..., 2] + optim_shift[:, None, None]).reshape(shape[:-1]) fov_x = fov_x.reshape(shape[:-3]) fov_y = fov_y.reshape(shape[:-3]) optim_shift = optim_shift.reshape(shape[:-3]) return depth, fov_x, fov_y, optim_shift def mask_aware_nearest_resize(mask: torch.BoolTensor, target_width: int, target_height: int) -> Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]: """ Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. ### Parameters - `mask`: Input 2D mask of shape (..., H, W) - `target_width`: target width of the resized map - `target_height`: target height of the resized map ### Returns - `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension - `target_mask`: Mask of the resized map of shape (..., target_height, target_width) """ height, width = mask.shape[-2:] device = mask.device filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f) filter_size = filter_h_i * filter_w_i padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2) # Window the original mask and uv uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device) indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width) padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device) padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device) padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device) padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1)) windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1)) windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1)) # Gather the target pixels's local window target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device) target_corner = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device) target_corner = torch.round(target_corner - 0.5).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device) target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size) target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size) target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size) target_window_indices = target_window_indices.expand_as(target_window_mask) # Compute nearest neighbor in the local window for each pixel dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size) nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1) nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width) target_mask = torch.any(target_window_mask, dim=-1) nearest_i, nearest_j = nearest_idx // width, nearest_idx % width batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])] return (*batch_indices, nearest_i, nearest_j), target_mask