from typing import * from functools import partial import math import numpy as np import utils3d from .tools import timeit def weighted_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: if w is None: return np.mean(x, axis=axis) else: w = w.astype(x.dtype) return (x * w).mean(axis=axis) / np.clip(w.mean(axis=axis), eps, None) def harmonic_mean_numpy(x: np.ndarray, w: np.ndarray = None, axis: Union[int, Tuple[int,...]] = None, keepdims: bool = False, eps: float = 1e-7) -> np.ndarray: if w is None: return 1 / (1 / np.clip(x, eps, None)).mean(axis=axis) else: w = w.astype(x.dtype) return 1 / (weighted_mean_numpy(1 / (x + eps), w, axis=axis, keepdims=keepdims, eps=eps) + eps) def image_plane_uv_numpy(width: int, height: int, aspect_ratio: float = None, dtype: np.dtype = np.float32) -> np.ndarray: "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)" if aspect_ratio is None: aspect_ratio = width / height span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5 span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5 u = np.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype) v = np.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype) u, v = np.meshgrid(u, v, indexing='xy') uv = np.stack([u, v], axis=-1) return uv def focal_to_fov_numpy(focal: np.ndarray): return 2 * np.arctan(0.5 / focal) def fov_to_focal_numpy(fov: np.ndarray): return 0.5 / np.tan(fov / 2) def intrinsics_to_fov_numpy(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]: fov_x = focal_to_fov_numpy(intrinsics[..., 0, 0]) fov_y = focal_to_fov_numpy(intrinsics[..., 1, 1]) return fov_x, fov_y def solve_optimal_shift_focal(uv: np.ndarray, xyz: np.ndarray, ransac_iters: int = None, ransac_hypothetical_size: float = 0.1, ransac_threshold: float = 0.1): "Solve `min |focal * xy / (z + shift) - uv|` with respect to shift and focal" from scipy.optimize import least_squares uv, xy, z = uv.reshape(-1, 2), xyz[..., :2].reshape(-1, 2), xyz[..., 2].reshape(-1) def fn(uv: np.ndarray, xy: np.ndarray, z: np.ndarray, shift: np.ndarray): xy_proj = xy / (z + shift)[: , None] f = (xy_proj * uv).sum() / np.square(xy_proj).sum() err = (f * xy_proj - uv).ravel() return err initial_shift = 0 #-z.min(keepdims=True) + 1.0 if ransac_iters is None: solution = least_squares(partial(fn, uv, xy, z), x0=initial_shift, ftol=1e-3, method='lm') optim_shift = solution['x'].squeeze().astype(np.float32) else: best_err, best_shift = np.inf, None for _ in range(ransac_iters): maybe_inliers = np.random.choice(len(z), size=int(ransac_hypothetical_size * len(z)), replace=False) solution = least_squares(partial(fn, uv[maybe_inliers], xy[maybe_inliers], z[maybe_inliers]), x0=initial_shift, ftol=1e-3, method='lm') maybe_shift = solution['x'].squeeze().astype(np.float32) confirmed_inliers = np.linalg.norm(fn(uv, xy, z, maybe_shift).reshape(-1, 2), axis=-1) < ransac_threshold if confirmed_inliers.sum() > 10: solution = least_squares(partial(fn, uv[confirmed_inliers], xy[confirmed_inliers], z[confirmed_inliers]), x0=maybe_shift, ftol=1e-3, method='lm') better_shift = solution['x'].squeeze().astype(np.float32) else: better_shift = maybe_shift err = np.linalg.norm(fn(uv, xy, z, better_shift).reshape(-1, 2), axis=-1).clip(max=ransac_threshold).mean() if err < best_err: best_err, best_shift = err, better_shift initial_shift = best_shift optim_shift = best_shift xy_proj = xy / (z + optim_shift)[: , None] optim_focal = (xy_proj * uv).sum() / (xy_proj * xy_proj).sum() return optim_shift, optim_focal def point_map_to_depth_numpy(points: np.ndarray, mask: np.ndarray = None, downsample_size: Tuple[int, int] = (64, 64)): import cv2 assert points.shape[-1] == 3, "Points should (H, W, 3)" height, width = points.shape[-3], points.shape[-2] diagonal = (height ** 2 + width ** 2) ** 0.5 uv = image_plane_uv_numpy(width=width, height=height) if mask is None: points_lr = cv2.resize(points, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 3) uv_lr = cv2.resize(uv, downsample_size, interpolation=cv2.INTER_LINEAR).reshape(-1, 2) else: index, mask_lr = mask_aware_nearest_resize_numpy(mask, *downsample_size) points_lr, uv_lr = points[index][mask_lr], uv[index][mask_lr] if points_lr.size == 0: return np.zeros((height, width)), 0, 0, 0 optim_shift, optim_focal = solve_optimal_shift_focal(uv_lr, points_lr, ransac_iters=None) fov_x = 2 * np.arctan(width / diagonal / optim_focal) fov_y = 2 * np.arctan(height / diagonal / optim_focal) depth = points[:, :, 2] + optim_shift return depth, fov_x, fov_y, optim_shift def mask_aware_nearest_resize_numpy(mask: np.ndarray, target_width: int, target_height: int) -> Tuple[np.ndarray, np.ndarray, np.ndarray]: """ Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map. ### Parameters - `mask`: Input 2D mask of shape (..., H, W) - `target_width`: target width of the resized map - `target_height`: target height of the resized map ### Returns - `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width). Indices are like j + i * W, where j is the row index and i is the column index. - `target_mask`: Mask of the resized map of shape (..., target_height, target_width) """ height, width = mask.shape[-2:] filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width) filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f) filter_size = filter_h_i * filter_w_i padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2) # Window the original mask and uv uv = utils3d.numpy.image_pixel_center(width=width, height=height, dtype=np.float32) indices = np.arange(height * width, dtype=np.int32).reshape(height, width) padded_uv = np.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=np.float32) padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv padded_mask = np.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=bool) padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask padded_indices = np.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=np.int32) padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices windowed_uv = utils3d.numpy.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, axis=(0, 1)) windowed_mask = utils3d.numpy.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, axis=(-2, -1)) windowed_indices = utils3d.numpy.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, axis=(0, 1)) # Gather the target pixels's local window target_uv = utils3d.numpy.image_uv(width=target_width, height=target_height, dtype=np.float32) * np.array([width, height], dtype=np.float32) target_corner = target_uv - np.array((filter_w_f / 2, filter_h_f / 2), dtype=np.float32) target_corner = np.round(target_corner - 0.5).astype(np.int32) + np.array((padding_w, padding_h), dtype=np.int32) target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size) target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size) target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size) # Compute nearest neighbor in the local window for each pixel dist = np.square(target_window_uv - target_uv[..., None]) dist = dist[..., 0, :] + dist[..., 1, :] dist = np.where(target_window_mask, dist, np.inf) # (..., target_height, tgt_width, filter_size) nearest_in_window = np.argmin(dist, axis=-1, keepdims=True) # (..., target_height, tgt_width, 1) nearest_idx = np.take_along_axis(target_window_indices, nearest_in_window, axis=-1).squeeze(-1) # (..., target_height, tgt_width) nearest_i, nearest_j = nearest_idx // width, nearest_idx % width target_mask = np.any(target_window_mask, axis=-1) batch_indices = [np.arange(n).reshape([1] * i + [n] + [1] * (mask.ndim - i - 1)) for i, n in enumerate(mask.shape[:-2])] return (*batch_indices, nearest_i, nearest_j), target_mask