# Copyright (c) Meta Platforms, Inc. and affiliates. # # This source code is licensed under the Apache License, Version 2.0 # found in the LICENSE file in the root directory of this source tree. import os from typing import Callable, Optional import warnings from torch import Tensor, nn import torch.nn.functional as F class SwiGLUFFN(nn.Module): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = None, drop: float = 0.0, bias: bool = True, ) -> None: super().__init__() out_features = out_features or in_features hidden_features = hidden_features or in_features self.w12 = nn.Linear(in_features, 2 * hidden_features, bias=bias) self.w3 = nn.Linear(hidden_features, out_features, bias=bias) def forward(self, x: Tensor) -> Tensor: x12 = self.w12(x) x1, x2 = x12.chunk(2, dim=-1) hidden = F.silu(x1) * x2 return self.w3(hidden) XFORMERS_ENABLED = os.environ.get("XFORMERS_DISABLED") is None try: if XFORMERS_ENABLED: from xformers.ops import SwiGLU XFORMERS_AVAILABLE = True # warnings.warn("xFormers is available (SwiGLU)") else: # warnings.warn("xFormers is disabled (SwiGLU)") raise ImportError except ImportError: SwiGLU = SwiGLUFFN XFORMERS_AVAILABLE = False # warnings.warn("xFormers is not available (SwiGLU)") class SwiGLUFFNFused(SwiGLU): def __init__( self, in_features: int, hidden_features: Optional[int] = None, out_features: Optional[int] = None, act_layer: Callable[..., nn.Module] = None, drop: float = 0.0, bias: bool = True, ) -> None: out_features = out_features or in_features hidden_features = hidden_features or in_features hidden_features = (int(hidden_features * 2 / 3) + 7) // 8 * 8 super().__init__( in_features=in_features, hidden_features=hidden_features, out_features=out_features, bias=bias, )