update utils3d
Browse files- utils3d/numpy/__init__.py +3 -0
- utils3d/numpy/transforms.py +23 -6
- utils3d/numpy/utils.py +25 -20
utils3d/numpy/__init__.py
CHANGED
@@ -58,6 +58,9 @@ __modules_all__ = {
|
|
58 |
'perspective_from_fov_xy',
|
59 |
'intrinsics_from_focal_center',
|
60 |
'intrinsics_from_fov',
|
|
|
|
|
|
|
61 |
'view_look_at',
|
62 |
'extrinsics_look_at',
|
63 |
'perspective_to_intrinsics',
|
|
|
58 |
'perspective_from_fov_xy',
|
59 |
'intrinsics_from_focal_center',
|
60 |
'intrinsics_from_fov',
|
61 |
+
'fov_to_focal',
|
62 |
+
'focal_to_fov',
|
63 |
+
'intrinsics_to_fov',
|
64 |
'view_look_at',
|
65 |
'extrinsics_look_at',
|
66 |
'perspective_to_intrinsics',
|
utils3d/numpy/transforms.py
CHANGED
@@ -10,6 +10,9 @@ __all__ = [
|
|
10 |
'perspective_from_fov_xy',
|
11 |
'intrinsics_from_focal_center',
|
12 |
'intrinsics_from_fov',
|
|
|
|
|
|
|
13 |
'view_look_at',
|
14 |
'extrinsics_look_at',
|
15 |
'perspective_to_intrinsics',
|
@@ -78,12 +81,12 @@ def perspective(
|
|
78 |
|
79 |
|
80 |
def perspective_from_fov(
|
81 |
-
|
82 |
-
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
"""
|
88 |
Get OpenGL perspective matrix from field of view in largest dimension
|
89 |
|
@@ -193,6 +196,20 @@ def intrinsics_from_fov(
|
|
193 |
return ret
|
194 |
|
195 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
196 |
@batched(1,1,1)
|
197 |
def view_look_at(
|
198 |
eye: np.ndarray,
|
|
|
10 |
'perspective_from_fov_xy',
|
11 |
'intrinsics_from_focal_center',
|
12 |
'intrinsics_from_fov',
|
13 |
+
'fov_to_focal',
|
14 |
+
'focal_to_fov',
|
15 |
+
'intrinsics_to_fov',
|
16 |
'view_look_at',
|
17 |
'extrinsics_look_at',
|
18 |
'perspective_to_intrinsics',
|
|
|
81 |
|
82 |
|
83 |
def perspective_from_fov(
|
84 |
+
fov: Union[float, np.ndarray],
|
85 |
+
width: Union[int, np.ndarray],
|
86 |
+
height: Union[int, np.ndarray],
|
87 |
+
near: Union[float, np.ndarray],
|
88 |
+
far: Union[float, np.ndarray]
|
89 |
+
) -> np.ndarray:
|
90 |
"""
|
91 |
Get OpenGL perspective matrix from field of view in largest dimension
|
92 |
|
|
|
196 |
return ret
|
197 |
|
198 |
|
199 |
+
def focal_to_fov(focal: np.ndarray):
|
200 |
+
return 2 * np.arctan(0.5 / focal)
|
201 |
+
|
202 |
+
|
203 |
+
def fov_to_focal(fov: np.ndarray):
|
204 |
+
return 0.5 / np.tan(fov / 2)
|
205 |
+
|
206 |
+
|
207 |
+
def intrinsics_to_fov(intrinsics: np.ndarray) -> Tuple[np.ndarray, np.ndarray]:
|
208 |
+
fov_x = focal_to_fov(intrinsics[..., 0, 0])
|
209 |
+
fov_y = focal_to_fov(intrinsics[..., 1, 1])
|
210 |
+
return fov_x, fov_y
|
211 |
+
|
212 |
+
|
213 |
@batched(1,1,1)
|
214 |
def view_look_at(
|
215 |
eye: np.ndarray,
|
utils3d/numpy/utils.py
CHANGED
@@ -362,41 +362,46 @@ def image_pixel(
|
|
362 |
|
363 |
|
364 |
def image_mesh(
|
365 |
-
|
366 |
-
width: int,
|
367 |
mask: np.ndarray = None,
|
368 |
-
tri: bool = False
|
369 |
-
|
|
|
370 |
"""
|
371 |
-
Get
|
372 |
|
373 |
Args:
|
374 |
-
|
375 |
-
height (int): image height
|
376 |
mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.
|
377 |
|
378 |
Returns:
|
379 |
-
|
380 |
-
|
381 |
indices (np.ndarray, optional): indices of vertices in the original mesh
|
382 |
"""
|
383 |
-
|
384 |
-
|
385 |
-
|
386 |
-
|
387 |
row_faces = np.stack([np.arange(0, width - 1, dtype=np.int32), np.arange(width, 2 * width - 1, dtype=np.int32), np.arange(1 + width, 2 * width, dtype=np.int32), np.arange(1, width, dtype=np.int32)], axis=1)
|
388 |
faces = (np.arange(0, (height - 1) * width, width, dtype=np.int32)[:, None, None] + row_faces[None, :, :]).reshape((-1, 4))
|
389 |
-
if mask is
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
390 |
quad_mask = (mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]).ravel()
|
391 |
faces = faces[quad_mask]
|
392 |
-
faces, uv, indices = mesh.remove_unreferenced_vertices(faces, uv, return_indices=True)
|
393 |
if tri:
|
394 |
faces = mesh.triangulate(faces)
|
395 |
-
return
|
396 |
-
|
397 |
-
|
398 |
-
|
399 |
-
|
400 |
|
401 |
def image_mesh_from_depth(
|
402 |
depth: np.ndarray,
|
|
|
362 |
|
363 |
|
364 |
def image_mesh(
|
365 |
+
*image_attrs: np.ndarray,
|
|
|
366 |
mask: np.ndarray = None,
|
367 |
+
tri: bool = False,
|
368 |
+
return_indices: bool = False
|
369 |
+
) -> Tuple[np.ndarray, ...]:
|
370 |
"""
|
371 |
+
Get a mesh regarding image pixel uv coordinates as vertices and image grid as faces.
|
372 |
|
373 |
Args:
|
374 |
+
*image_attrs (np.ndarray): image attributes in shape (height, width, [channels])
|
|
|
375 |
mask (np.ndarray, optional): binary mask of shape (height, width), dtype=bool. Defaults to None.
|
376 |
|
377 |
Returns:
|
378 |
+
faces (np.ndarray): faces connecting neighboring pixels. shape (T, 4) if tri is False, else (T, 3)
|
379 |
+
*vertex_attrs (np.ndarray): vertex attributes in corresponding order with input image_attrs
|
380 |
indices (np.ndarray, optional): indices of vertices in the original mesh
|
381 |
"""
|
382 |
+
assert (len(image_attrs) > 0) or (mask is not None), "At least one of image_attrs or mask should be provided"
|
383 |
+
height, width = next(image_attrs).shape[:2] if mask is None else mask.shape
|
384 |
+
assert all(img.shape[:2] == (height, width) for img in image_attrs), "All image_attrs should have the same shape"
|
385 |
+
|
386 |
row_faces = np.stack([np.arange(0, width - 1, dtype=np.int32), np.arange(width, 2 * width - 1, dtype=np.int32), np.arange(1 + width, 2 * width, dtype=np.int32), np.arange(1, width, dtype=np.int32)], axis=1)
|
387 |
faces = (np.arange(0, (height - 1) * width, width, dtype=np.int32)[:, None, None] + row_faces[None, :, :]).reshape((-1, 4))
|
388 |
+
if mask is None:
|
389 |
+
if tri:
|
390 |
+
faces = mesh.triangulate(faces)
|
391 |
+
ret = [faces, *(img.reshape(-1, *img.shape[2:]) for img in image_attrs)]
|
392 |
+
if return_indices:
|
393 |
+
ret.append(np.arange(height * width, dtype=np.int32))
|
394 |
+
return tuple(ret)
|
395 |
+
else:
|
396 |
quad_mask = (mask[:-1, :-1] & mask[1:, :-1] & mask[1:, 1:] & mask[:-1, 1:]).ravel()
|
397 |
faces = faces[quad_mask]
|
|
|
398 |
if tri:
|
399 |
faces = mesh.triangulate(faces)
|
400 |
+
return mesh.remove_unreferenced_vertices(
|
401 |
+
faces,
|
402 |
+
*(x.reshape(-1, *x.shape[2:]) for x in image_attrs),
|
403 |
+
return_indices=return_indices
|
404 |
+
)
|
405 |
|
406 |
def image_mesh_from_depth(
|
407 |
depth: np.ndarray,
|