|
import numpy as np |
|
from typing import * |
|
from ._helpers import batched |
|
|
|
|
|
__all__ = [ |
|
'triangulate', |
|
'compute_face_normal', |
|
'compute_face_angle', |
|
'compute_vertex_normal', |
|
'compute_vertex_normal_weighted', |
|
'remove_corrupted_faces', |
|
'merge_duplicate_vertices', |
|
'remove_unreferenced_vertices', |
|
'subdivide_mesh_simple', |
|
'mesh_relations', |
|
'flatten_mesh_indices' |
|
] |
|
|
|
|
|
def triangulate( |
|
faces: np.ndarray, |
|
vertices: np.ndarray = None, |
|
backslash: np.ndarray = None |
|
) -> np.ndarray: |
|
""" |
|
Triangulate a polygonal mesh. |
|
|
|
Args: |
|
faces (np.ndarray): [L, P] polygonal faces |
|
vertices (np.ndarray, optional): [N, 3] 3-dimensional vertices. |
|
If given, the triangulation is performed according to the distance |
|
between vertices. Defaults to None. |
|
backslash (np.ndarray, optional): [L] boolean array indicating |
|
how to triangulate the quad faces. Defaults to None. |
|
|
|
Returns: |
|
(np.ndarray): [L * (P - 2), 3] triangular faces |
|
""" |
|
if faces.shape[-1] == 3: |
|
return faces |
|
P = faces.shape[-1] |
|
if vertices is not None: |
|
assert faces.shape[-1] == 4, "now only support quad mesh" |
|
if backslash is None: |
|
backslash = np.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 2]], axis=-1) < \ |
|
np.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 3]], axis=-1) |
|
if backslash is None: |
|
loop_indice = np.stack([ |
|
np.zeros(P - 2, dtype=int), |
|
np.arange(1, P - 1, 1, dtype=int), |
|
np.arange(2, P, 1, dtype=int) |
|
], axis=1) |
|
return faces[:, loop_indice].reshape((-1, 3)) |
|
else: |
|
assert faces.shape[-1] == 4, "now only support quad mesh" |
|
faces = np.where( |
|
backslash[:, None], |
|
faces[:, [0, 1, 2, 0, 2, 3]], |
|
faces[:, [0, 1, 3, 3, 1, 2]] |
|
).reshape((-1, 3)) |
|
return faces |
|
|
|
|
|
@batched(2, None) |
|
def compute_face_normal( |
|
vertices: np.ndarray, |
|
faces: np.ndarray |
|
) -> np.ndarray: |
|
""" |
|
Compute face normals of a triangular mesh |
|
|
|
Args: |
|
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
|
|
Returns: |
|
normals (np.ndarray): [..., T, 3] face normals |
|
""" |
|
normal = np.cross( |
|
vertices[..., faces[:, 1], :] - vertices[..., faces[:, 0], :], |
|
vertices[..., faces[:, 2], :] - vertices[..., faces[:, 0], :] |
|
) |
|
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True) |
|
normal_norm[normal_norm == 0] = 1 |
|
normal /= normal_norm |
|
return normal |
|
|
|
|
|
@batched(2, None) |
|
def compute_face_angle( |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
eps: float = 1e-12 |
|
) -> np.ndarray: |
|
""" |
|
Compute face angles of a triangular mesh |
|
|
|
Args: |
|
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
|
|
Returns: |
|
angles (np.ndarray): [..., T, 3] face angles |
|
""" |
|
face_angle = np.zeros_like(faces, dtype=vertices.dtype) |
|
for i in range(3): |
|
edge1 = vertices[..., faces[:, (i + 1) % 3], :] - vertices[..., faces[:, i], :] |
|
edge2 = vertices[..., faces[:, (i + 2) % 3], :] - vertices[..., faces[:, i], :] |
|
face_angle[..., i] = np.arccos(np.sum( |
|
edge1 / np.clip(np.linalg.norm(edge1, axis=-1, keepdims=True), eps, None) * |
|
edge2 / np.clip(np.linalg.norm(edge2, axis=-1, keepdims=True), eps, None), |
|
axis=-1 |
|
)) |
|
return face_angle |
|
|
|
|
|
@batched(2, None, 2) |
|
def compute_vertex_normal( |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
face_normal: np.ndarray = None |
|
) -> np.ndarray: |
|
""" |
|
Compute vertex normals of a triangular mesh by averaging neightboring face normals |
|
TODO: can be improved. |
|
|
|
Args: |
|
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
face_normal (np.ndarray, optional): [..., T, 3] face normals. |
|
None to compute face normals from vertices and faces. Defaults to None. |
|
|
|
Returns: |
|
normals (np.ndarray): [..., N, 3] vertex normals |
|
""" |
|
if face_normal is None: |
|
face_normal = compute_face_normal(vertices, faces) |
|
vertex_normal = np.zeros_like(vertices, dtype=vertices.dtype) |
|
for n in range(vertices.shape[0]): |
|
for i in range(3): |
|
vertex_normal[n, :, 0] += np.bincount(faces[:, i], weights=face_normal[n, :, 0], minlength=vertices.shape[1]) |
|
vertex_normal[n, :, 1] += np.bincount(faces[:, i], weights=face_normal[n, :, 1], minlength=vertices.shape[1]) |
|
vertex_normal[n, :, 2] += np.bincount(faces[:, i], weights=face_normal[n, :, 2], minlength=vertices.shape[1]) |
|
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True) |
|
vertex_normal_norm[vertex_normal_norm == 0] = 1 |
|
vertex_normal /= vertex_normal_norm |
|
return vertex_normal |
|
|
|
|
|
@batched(2, None, 2) |
|
def compute_vertex_normal_weighted( |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
face_normal: np.ndarray = None |
|
) -> np.ndarray: |
|
""" |
|
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals |
|
according to the angles |
|
|
|
Args: |
|
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [..., T, 3] triangular face indices |
|
face_normal (np.ndarray, optional): [..., T, 3] face normals. |
|
None to compute face normals from vertices and faces. Defaults to None. |
|
|
|
Returns: |
|
normals (np.ndarray): [..., N, 3] vertex normals |
|
""" |
|
if face_normal is None: |
|
face_normal = compute_face_normal(vertices, faces) |
|
face_angle = compute_face_angle(vertices, faces) |
|
vertex_normal = np.zeros_like(vertices) |
|
for n in range(vertices.shape[0]): |
|
for i in range(3): |
|
vertex_normal[n, :, 0] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 0] * face_angle[n, :, i], minlength=vertices.shape[1]) |
|
vertex_normal[n, :, 1] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 1] * face_angle[n, :, i], minlength=vertices.shape[1]) |
|
vertex_normal[n, :, 2] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 2] * face_angle[n, :, i], minlength=vertices.shape[1]) |
|
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True) |
|
vertex_normal_norm[vertex_normal_norm == 0] = 1 |
|
vertex_normal /= vertex_normal_norm |
|
return vertex_normal |
|
|
|
|
|
def remove_corrupted_faces( |
|
faces: np.ndarray |
|
) -> np.ndarray: |
|
""" |
|
Remove corrupted faces (faces with duplicated vertices) |
|
|
|
Args: |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
|
|
Returns: |
|
np.ndarray: [T_, 3] triangular face indices |
|
""" |
|
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0]) |
|
return faces[~corrupted] |
|
|
|
|
|
def merge_duplicate_vertices( |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
tol: float = 1e-6 |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Merge duplicate vertices of a triangular mesh. |
|
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly. |
|
|
|
Args: |
|
vertices (np.ndarray): [N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
tol (float, optional): tolerance for merging. Defaults to 1e-6. |
|
|
|
Returns: |
|
vertices (np.ndarray): [N_, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
""" |
|
vertices_round = np.round(vertices / tol) |
|
_, uni_i, uni_inv = np.unique(vertices_round, return_index=True, return_inverse=True, axis=0) |
|
vertices = vertices[uni_i] |
|
faces = uni_inv[faces] |
|
return vertices, faces |
|
|
|
|
|
def remove_unreferenced_vertices( |
|
faces: np.ndarray, |
|
*vertice_attrs, |
|
return_indices: bool = False |
|
) -> Tuple[np.ndarray, ...]: |
|
""" |
|
Remove unreferenced vertices of a mesh. |
|
Unreferenced vertices are removed, and the face indices are updated accordingly. |
|
|
|
Args: |
|
faces (np.ndarray): [T, P] face indices |
|
*vertice_attrs: vertex attributes |
|
|
|
Returns: |
|
faces (np.ndarray): [T, P] face indices |
|
*vertice_attrs: vertex attributes |
|
indices (np.ndarray, optional): [N] indices of vertices that are kept. Defaults to None. |
|
""" |
|
P = faces.shape[-1] |
|
fewer_indices, inv_map = np.unique(faces, return_inverse=True) |
|
faces = inv_map.astype(np.int32).reshape(-1, P) |
|
ret = [faces] |
|
for attr in vertice_attrs: |
|
ret.append(attr[fewer_indices]) |
|
if return_indices: |
|
ret.append(fewer_indices) |
|
return tuple(ret) |
|
|
|
|
|
def subdivide_mesh_simple( |
|
vertices: np.ndarray, |
|
faces: np.ndarray, |
|
n: int = 1 |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles. |
|
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list. |
|
|
|
Args: |
|
vertices (np.ndarray): [N, 3] 3-dimensional vertices |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
n (int, optional): number of subdivisions. Defaults to 1. |
|
|
|
Returns: |
|
vertices (np.ndarray): [N_, 3] subdivided 3-dimensional vertices |
|
faces (np.ndarray): [4 * T, 3] subdivided triangular face indices |
|
""" |
|
for _ in range(n): |
|
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=0) |
|
edges = np.sort(edges, axis=2) |
|
uni_edges, uni_inv = np.unique(edges.reshape(-1, 2), return_inverse=True, axis=0) |
|
uni_inv = uni_inv.reshape(3, -1) |
|
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2 |
|
|
|
n_vertices = vertices.shape[0] |
|
vertices = np.concatenate([vertices, midpoints], axis=0) |
|
faces = np.concatenate([ |
|
np.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1), |
|
np.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1), |
|
np.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1), |
|
np.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1), |
|
], axis=0) |
|
return vertices, faces |
|
|
|
|
|
def mesh_relations( |
|
faces: np.ndarray, |
|
) -> Tuple[np.ndarray, np.ndarray]: |
|
""" |
|
Calculate the relation between vertices and faces. |
|
NOTE: The input mesh must be a manifold triangle mesh. |
|
|
|
Args: |
|
faces (np.ndarray): [T, 3] triangular face indices |
|
|
|
Returns: |
|
edges (np.ndarray): [E, 2] edge indices |
|
edge2face (np.ndarray): [E, 2] edge to face relation. The second column is -1 if the edge is boundary. |
|
face2edge (np.ndarray): [T, 3] face to edge relation |
|
face2face (np.ndarray): [T, 3] face to face relation |
|
""" |
|
T = faces.shape[0] |
|
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=1).reshape(-1, 2) |
|
edges = np.sort(edges, axis=1) |
|
edges, face2edge, occurence = np.unique(edges, axis=0, return_inverse=True, return_counts=True) |
|
E = edges.shape[0] |
|
assert np.all(occurence <= 2), "The input mesh is not a manifold mesh." |
|
|
|
|
|
padding = np.arange(E, dtype=np.int32)[occurence == 1] |
|
padded_face2edge = np.concatenate([face2edge, padding], axis=0) |
|
edge2face = np.argsort(padded_face2edge, kind='stable').reshape(-1, 2) // 3 |
|
edge2face_valid = edge2face[:, 1] < T |
|
edge2face[~edge2face_valid, 1] = -1 |
|
|
|
|
|
face2edge = face2edge.reshape(-1, 3) |
|
|
|
|
|
face2face = edge2face[face2edge] |
|
face2face = face2face[face2face != np.arange(T)[:, None, None]].reshape(T, 3) |
|
|
|
return edges, edge2face, face2edge, face2face |
|
|
|
|
|
@overload |
|
def flatten_mesh_indices(faces1: np.ndarray, attr1: np.ndarray, *other_faces_attrs_pairs: np.ndarray) -> Tuple[np.ndarray, ...]: |
|
""" |
|
Rearrange the indices of a mesh to a flattened version. Vertices will be no longer shared. |
|
|
|
### Parameters: |
|
- `faces1`: [T, P] face indices of the first attribute |
|
- `attr1`: [N1, ...] attributes of the first mesh |
|
- ... |
|
|
|
### Returns: |
|
- `faces`: [T, P] flattened face indices, contigous from 0 to T * P - 1 |
|
- `attr1`: [T * P, ...] attributes of the first mesh, where every P values correspond to a face |
|
_ ... |
|
""" |
|
def flatten_mesh_indices(*args: np.ndarray) -> Tuple[np.ndarray, ...]: |
|
assert len(args) % 2 == 0, "The number of arguments must be even." |
|
T, P = args[0].shape |
|
assert all(arg.shape[0] == T and arg.shape[1] == P for arg in args[::2]), "The faces must have the same shape." |
|
attr_flat = [] |
|
for faces_, attr_ in zip(args[::2], args[1::2]): |
|
attr_flat_ = attr_[faces_].reshape(-1, *attr_.shape[1:]) |
|
attr_flat.append(attr_flat_) |
|
faces_flat = np.arange(T * P, dtype=np.int32).reshape(T, P) |
|
return faces_flat, *attr_flat |