MoGe / utils3d /numpy /mesh.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
13.2 kB
import numpy as np
from typing import *
from ._helpers import batched
__all__ = [
'triangulate',
'compute_face_normal',
'compute_face_angle',
'compute_vertex_normal',
'compute_vertex_normal_weighted',
'remove_corrupted_faces',
'merge_duplicate_vertices',
'remove_unreferenced_vertices',
'subdivide_mesh_simple',
'mesh_relations',
'flatten_mesh_indices'
]
def triangulate(
faces: np.ndarray,
vertices: np.ndarray = None,
backslash: np.ndarray = None
) -> np.ndarray:
"""
Triangulate a polygonal mesh.
Args:
faces (np.ndarray): [L, P] polygonal faces
vertices (np.ndarray, optional): [N, 3] 3-dimensional vertices.
If given, the triangulation is performed according to the distance
between vertices. Defaults to None.
backslash (np.ndarray, optional): [L] boolean array indicating
how to triangulate the quad faces. Defaults to None.
Returns:
(np.ndarray): [L * (P - 2), 3] triangular faces
"""
if faces.shape[-1] == 3:
return faces
P = faces.shape[-1]
if vertices is not None:
assert faces.shape[-1] == 4, "now only support quad mesh"
if backslash is None:
backslash = np.linalg.norm(vertices[faces[:, 0]] - vertices[faces[:, 2]], axis=-1) < \
np.linalg.norm(vertices[faces[:, 1]] - vertices[faces[:, 3]], axis=-1)
if backslash is None:
loop_indice = np.stack([
np.zeros(P - 2, dtype=int),
np.arange(1, P - 1, 1, dtype=int),
np.arange(2, P, 1, dtype=int)
], axis=1)
return faces[:, loop_indice].reshape((-1, 3))
else:
assert faces.shape[-1] == 4, "now only support quad mesh"
faces = np.where(
backslash[:, None],
faces[:, [0, 1, 2, 0, 2, 3]],
faces[:, [0, 1, 3, 3, 1, 2]]
).reshape((-1, 3))
return faces
@batched(2, None)
def compute_face_normal(
vertices: np.ndarray,
faces: np.ndarray
) -> np.ndarray:
"""
Compute face normals of a triangular mesh
Args:
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
Returns:
normals (np.ndarray): [..., T, 3] face normals
"""
normal = np.cross(
vertices[..., faces[:, 1], :] - vertices[..., faces[:, 0], :],
vertices[..., faces[:, 2], :] - vertices[..., faces[:, 0], :]
)
normal_norm = np.linalg.norm(normal, axis=-1, keepdims=True)
normal_norm[normal_norm == 0] = 1
normal /= normal_norm
return normal
@batched(2, None)
def compute_face_angle(
vertices: np.ndarray,
faces: np.ndarray,
eps: float = 1e-12
) -> np.ndarray:
"""
Compute face angles of a triangular mesh
Args:
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
Returns:
angles (np.ndarray): [..., T, 3] face angles
"""
face_angle = np.zeros_like(faces, dtype=vertices.dtype)
for i in range(3):
edge1 = vertices[..., faces[:, (i + 1) % 3], :] - vertices[..., faces[:, i], :]
edge2 = vertices[..., faces[:, (i + 2) % 3], :] - vertices[..., faces[:, i], :]
face_angle[..., i] = np.arccos(np.sum(
edge1 / np.clip(np.linalg.norm(edge1, axis=-1, keepdims=True), eps, None) *
edge2 / np.clip(np.linalg.norm(edge2, axis=-1, keepdims=True), eps, None),
axis=-1
))
return face_angle
@batched(2, None, 2)
def compute_vertex_normal(
vertices: np.ndarray,
faces: np.ndarray,
face_normal: np.ndarray = None
) -> np.ndarray:
"""
Compute vertex normals of a triangular mesh by averaging neightboring face normals
TODO: can be improved.
Args:
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
face_normal (np.ndarray, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (np.ndarray): [..., N, 3] vertex normals
"""
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
vertex_normal = np.zeros_like(vertices, dtype=vertices.dtype)
for n in range(vertices.shape[0]):
for i in range(3):
vertex_normal[n, :, 0] += np.bincount(faces[:, i], weights=face_normal[n, :, 0], minlength=vertices.shape[1])
vertex_normal[n, :, 1] += np.bincount(faces[:, i], weights=face_normal[n, :, 1], minlength=vertices.shape[1])
vertex_normal[n, :, 2] += np.bincount(faces[:, i], weights=face_normal[n, :, 2], minlength=vertices.shape[1])
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True)
vertex_normal_norm[vertex_normal_norm == 0] = 1
vertex_normal /= vertex_normal_norm
return vertex_normal
@batched(2, None, 2)
def compute_vertex_normal_weighted(
vertices: np.ndarray,
faces: np.ndarray,
face_normal: np.ndarray = None
) -> np.ndarray:
"""
Compute vertex normals of a triangular mesh by weighted sum of neightboring face normals
according to the angles
Args:
vertices (np.ndarray): [..., N, 3] 3-dimensional vertices
faces (np.ndarray): [..., T, 3] triangular face indices
face_normal (np.ndarray, optional): [..., T, 3] face normals.
None to compute face normals from vertices and faces. Defaults to None.
Returns:
normals (np.ndarray): [..., N, 3] vertex normals
"""
if face_normal is None:
face_normal = compute_face_normal(vertices, faces)
face_angle = compute_face_angle(vertices, faces)
vertex_normal = np.zeros_like(vertices)
for n in range(vertices.shape[0]):
for i in range(3):
vertex_normal[n, :, 0] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 0] * face_angle[n, :, i], minlength=vertices.shape[1])
vertex_normal[n, :, 1] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 1] * face_angle[n, :, i], minlength=vertices.shape[1])
vertex_normal[n, :, 2] += np.bincount(faces[n, :, i], weights=face_normal[n, :, 2] * face_angle[n, :, i], minlength=vertices.shape[1])
vertex_normal_norm = np.linalg.norm(vertex_normal, axis=-1, keepdims=True)
vertex_normal_norm[vertex_normal_norm == 0] = 1
vertex_normal /= vertex_normal_norm
return vertex_normal
def remove_corrupted_faces(
faces: np.ndarray
) -> np.ndarray:
"""
Remove corrupted faces (faces with duplicated vertices)
Args:
faces (np.ndarray): [T, 3] triangular face indices
Returns:
np.ndarray: [T_, 3] triangular face indices
"""
corrupted = (faces[:, 0] == faces[:, 1]) | (faces[:, 1] == faces[:, 2]) | (faces[:, 2] == faces[:, 0])
return faces[~corrupted]
def merge_duplicate_vertices(
vertices: np.ndarray,
faces: np.ndarray,
tol: float = 1e-6
) -> Tuple[np.ndarray, np.ndarray]:
"""
Merge duplicate vertices of a triangular mesh.
Duplicate vertices are merged by selecte one of them, and the face indices are updated accordingly.
Args:
vertices (np.ndarray): [N, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
tol (float, optional): tolerance for merging. Defaults to 1e-6.
Returns:
vertices (np.ndarray): [N_, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
"""
vertices_round = np.round(vertices / tol)
_, uni_i, uni_inv = np.unique(vertices_round, return_index=True, return_inverse=True, axis=0)
vertices = vertices[uni_i]
faces = uni_inv[faces]
return vertices, faces
def remove_unreferenced_vertices(
faces: np.ndarray,
*vertice_attrs,
return_indices: bool = False
) -> Tuple[np.ndarray, ...]:
"""
Remove unreferenced vertices of a mesh.
Unreferenced vertices are removed, and the face indices are updated accordingly.
Args:
faces (np.ndarray): [T, P] face indices
*vertice_attrs: vertex attributes
Returns:
faces (np.ndarray): [T, P] face indices
*vertice_attrs: vertex attributes
indices (np.ndarray, optional): [N] indices of vertices that are kept. Defaults to None.
"""
P = faces.shape[-1]
fewer_indices, inv_map = np.unique(faces, return_inverse=True)
faces = inv_map.astype(np.int32).reshape(-1, P)
ret = [faces]
for attr in vertice_attrs:
ret.append(attr[fewer_indices])
if return_indices:
ret.append(fewer_indices)
return tuple(ret)
def subdivide_mesh_simple(
vertices: np.ndarray,
faces: np.ndarray,
n: int = 1
) -> Tuple[np.ndarray, np.ndarray]:
"""
Subdivide a triangular mesh by splitting each triangle into 4 smaller triangles.
NOTE: All original vertices are kept, and new vertices are appended to the end of the vertex list.
Args:
vertices (np.ndarray): [N, 3] 3-dimensional vertices
faces (np.ndarray): [T, 3] triangular face indices
n (int, optional): number of subdivisions. Defaults to 1.
Returns:
vertices (np.ndarray): [N_, 3] subdivided 3-dimensional vertices
faces (np.ndarray): [4 * T, 3] subdivided triangular face indices
"""
for _ in range(n):
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=0)
edges = np.sort(edges, axis=2)
uni_edges, uni_inv = np.unique(edges.reshape(-1, 2), return_inverse=True, axis=0)
uni_inv = uni_inv.reshape(3, -1)
midpoints = (vertices[uni_edges[:, 0]] + vertices[uni_edges[:, 1]]) / 2
n_vertices = vertices.shape[0]
vertices = np.concatenate([vertices, midpoints], axis=0)
faces = np.concatenate([
np.stack([faces[:, 0], n_vertices + uni_inv[0], n_vertices + uni_inv[2]], axis=1),
np.stack([faces[:, 1], n_vertices + uni_inv[1], n_vertices + uni_inv[0]], axis=1),
np.stack([faces[:, 2], n_vertices + uni_inv[2], n_vertices + uni_inv[1]], axis=1),
np.stack([n_vertices + uni_inv[0], n_vertices + uni_inv[1], n_vertices + uni_inv[2]], axis=1),
], axis=0)
return vertices, faces
def mesh_relations(
faces: np.ndarray,
) -> Tuple[np.ndarray, np.ndarray]:
"""
Calculate the relation between vertices and faces.
NOTE: The input mesh must be a manifold triangle mesh.
Args:
faces (np.ndarray): [T, 3] triangular face indices
Returns:
edges (np.ndarray): [E, 2] edge indices
edge2face (np.ndarray): [E, 2] edge to face relation. The second column is -1 if the edge is boundary.
face2edge (np.ndarray): [T, 3] face to edge relation
face2face (np.ndarray): [T, 3] face to face relation
"""
T = faces.shape[0]
edges = np.stack([faces[:, [0, 1]], faces[:, [1, 2]], faces[:, [2, 0]]], axis=1).reshape(-1, 2) # [3T, 2]
edges = np.sort(edges, axis=1) # [3T, 2]
edges, face2edge, occurence = np.unique(edges, axis=0, return_inverse=True, return_counts=True) # [E, 2], [3T], [E]
E = edges.shape[0]
assert np.all(occurence <= 2), "The input mesh is not a manifold mesh."
# Edge to face relation
padding = np.arange(E, dtype=np.int32)[occurence == 1]
padded_face2edge = np.concatenate([face2edge, padding], axis=0) # [2E]
edge2face = np.argsort(padded_face2edge, kind='stable').reshape(-1, 2) // 3 # [E, 2]
edge2face_valid = edge2face[:, 1] < T # [E]
edge2face[~edge2face_valid, 1] = -1
# Face to edge relation
face2edge = face2edge.reshape(-1, 3) # [T, 3]
# Face to face relation
face2face = edge2face[face2edge] # [T, 3, 2]
face2face = face2face[face2face != np.arange(T)[:, None, None]].reshape(T, 3) # [T, 3]
return edges, edge2face, face2edge, face2face
@overload
def flatten_mesh_indices(faces1: np.ndarray, attr1: np.ndarray, *other_faces_attrs_pairs: np.ndarray) -> Tuple[np.ndarray, ...]:
"""
Rearrange the indices of a mesh to a flattened version. Vertices will be no longer shared.
### Parameters:
- `faces1`: [T, P] face indices of the first attribute
- `attr1`: [N1, ...] attributes of the first mesh
- ...
### Returns:
- `faces`: [T, P] flattened face indices, contigous from 0 to T * P - 1
- `attr1`: [T * P, ...] attributes of the first mesh, where every P values correspond to a face
_ ...
"""
def flatten_mesh_indices(*args: np.ndarray) -> Tuple[np.ndarray, ...]:
assert len(args) % 2 == 0, "The number of arguments must be even."
T, P = args[0].shape
assert all(arg.shape[0] == T and arg.shape[1] == P for arg in args[::2]), "The faces must have the same shape."
attr_flat = []
for faces_, attr_ in zip(args[::2], args[1::2]):
attr_flat_ = attr_[faces_].reshape(-1, *attr_.shape[1:])
attr_flat.append(attr_flat_)
faces_flat = np.arange(T * P, dtype=np.int32).reshape(T, P)
return faces_flat, *attr_flat