MoGe / moge /utils /tools.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
7.34 kB
from typing import *
import time
from pathlib import Path
from numbers import Number
def catch_exception(fn):
def wrapper(*args, **kwargs):
try:
return fn(*args, **kwargs)
except Exception as e:
import traceback
print(f"Exception in {fn.__name__}({', '.join(repr(arg) for arg in args)}, {', '.join(f'{k}={v!r}' for k, v in kwargs.items())})")
traceback.print_exc(chain=False)
time.sleep(0.1)
return None
return wrapper
class CallbackOnException:
def __init__(self, callback: Callable, exception: type):
self.exception = exception
self.callback = callback
def __enter__(self):
return self
def __exit__(self, exc_type, exc_val, exc_tb):
if isinstance(exc_val, self.exception):
self.callback()
return True
return False
def traverse_nested_dict_keys(d: Dict[str, Dict]) -> Generator[Tuple[str, ...], None, None]:
for k, v in d.items():
if isinstance(v, dict):
for sub_key in traverse_nested_dict_keys(v):
yield (k, ) + sub_key
else:
yield (k, )
def get_nested_dict(d: Dict[str, Dict], keys: Tuple[str, ...], default: Any = None):
for k in keys:
d = d.get(k, default)
if d is None:
break
return d
def set_nested_dict(d: Dict[str, Dict], keys: Tuple[str, ...], value: Any):
for k in keys[:-1]:
d = d.setdefault(k, {})
d[keys[-1]] = value
def key_average(list_of_dicts: list) -> Dict[str, Any]:
"""
Returns a dictionary with the average value of each key in the input list of dictionaries.
"""
_nested_dict_keys = set()
for d in list_of_dicts:
_nested_dict_keys.update(traverse_nested_dict_keys(d))
_nested_dict_keys = sorted(_nested_dict_keys)
result = {}
for k in _nested_dict_keys:
values = [
get_nested_dict(d, k) for d in list_of_dicts
if get_nested_dict(d, k) is not None
]
avg = sum(values) / len(values) if values else float('nan')
set_nested_dict(result, k, avg)
return result
def flatten_nested_dict(d: Dict[str, Any], parent_key: Tuple[str, ...] = None) -> Dict[Tuple[str, ...], Any]:
"""
Flattens a nested dictionary into a single-level dictionary, with keys as tuples.
"""
items = []
if parent_key is None:
parent_key = ()
for k, v in d.items():
new_key = parent_key + (k, )
if isinstance(v, MutableMapping):
items.extend(flatten_nested_dict(v, new_key).items())
else:
items.append((new_key, v))
return dict(items)
def unflatten_nested_dict(d: Dict[str, Any]) -> Dict[str, Any]:
"""
Unflattens a single-level dictionary into a nested dictionary, with keys as tuples.
"""
result = {}
for k, v in d.items():
sub_dict = result
for k_ in k[:-1]:
if k_ not in sub_dict:
sub_dict[k_] = {}
sub_dict = sub_dict[k_]
sub_dict[k[-1]] = v
return result
def read_jsonl(file):
import json
with open(file, 'r') as f:
data = f.readlines()
return [json.loads(line) for line in data]
def write_jsonl(data: List[dict], file):
import json
with open(file, 'w') as f:
for item in data:
f.write(json.dumps(item) + '\n')
def save_metrics(save_path: Union[str, Path], all_metrics: Dict[str, List[Dict]]):
import pandas as pd
import json
with open(save_path, 'w') as f:
json.dump(all_metrics, f, indent=4)
def to_hierachical_dataframe(data: List[Dict[Tuple[str, ...], Any]]):
import pandas as pd
data = [flatten_nested_dict(d) for d in data]
df = pd.DataFrame(data)
df = df.sort_index(axis=1)
df.columns = pd.MultiIndex.from_tuples(df.columns)
return df
def recursive_replace(d: Union[List, Dict, str], mapping: Dict[str, str]):
if isinstance(d, str):
for old, new in mapping.items():
d = d.replace(old, new)
elif isinstance(d, list):
for i, item in enumerate(d):
d[i] = recursive_replace(item, mapping)
elif isinstance(d, dict):
for k, v in d.items():
d[k] = recursive_replace(v, mapping)
return d
class timeit:
_history: Dict[str, List['timeit']] = {}
def __init__(self, name: str = None, verbose: bool = True, multiple: bool = False):
self.name = name
self.verbose = verbose
self.start = None
self.end = None
self.multiple = multiple
if multiple and name not in timeit._history:
timeit._history[name] = []
def __call__(self, func: Callable):
import inspect
if inspect.iscoroutinefunction(func):
async def wrapper(*args, **kwargs):
with timeit(self.name or func.__qualname__):
ret = await func(*args, **kwargs)
return ret
return wrapper
else:
def wrapper(*args, **kwargs):
with timeit(self.name or func.__qualname__):
ret = func(*args, **kwargs)
return ret
return wrapper
def __enter__(self):
self.start = time.time()
@property
def time(self) -> float:
assert self.start is not None, "Time not yet started."
assert self.end is not None, "Time not yet ended."
return self.end - self.start
@property
def history(self) -> List['timeit']:
return timeit._history.get(self.name, [])
def __exit__(self, exc_type, exc_val, exc_tb):
self.end = time.time()
if self.multiple:
timeit._history[self.name].append(self)
if self.verbose:
if self.multiple:
avg = sum(t.time for t in timeit._history[self.name]) / len(timeit._history[self.name])
print(f"{self.name or 'It'} took {avg} seconds in average.")
else:
print(f"{self.name or 'It'} took {self.time} seconds.")
def strip_common_prefix_suffix(strings: List[str]) -> List[str]:
first = strings[0]
for start in range(len(first)):
if any(s[start] != strings[0][start] for s in strings):
break
for end in range(1, min(len(s) for s in strings)):
if any(s[-end] != first[-end] for s in strings):
break
return [s[start:len(s) - end + 1] for s in strings]
def multithead_execute(inputs: List[Any], num_workers: int, pbar = None):
from concurrent.futures import ThreadPoolExecutor
from contextlib import nullcontext
from tqdm import tqdm
if pbar is not None:
pbar.total = len(inputs) if hasattr(inputs, '__len__') else None
else:
pbar = tqdm(total=len(inputs) if hasattr(inputs, '__len__') else None)
def decorator(fn: Callable):
with (
ThreadPoolExecutor(max_workers=num_workers) as executor,
pbar
):
pbar.refresh()
@catch_exception
def _fn(input):
ret = fn(input)
pbar.update()
return ret
executor.map(_fn, inputs)
executor.shutdown(wait=True)
return decorator