MoGe / moge /utils /io.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
16.1 kB
import os
os.environ['OPENCV_IO_ENABLE_OPENEXR'] = '1'
from typing import IO
import zipfile
import json
import io
from typing import *
from pathlib import Path
import re
import numpy as np
import cv2
from .tools import timeit
LEGACY_SEGFORMER_CLASSES = [
'wall', 'building', 'sky', 'floor', 'tree', 'ceiling', 'road', 'bed ',
'windowpane', 'grass', 'cabinet', 'sidewalk', 'person', 'earth',
'door', 'table', 'mountain', 'plant', 'curtain', 'chair', 'car',
'water', 'painting', 'sofa', 'shelf', 'house', 'sea', 'mirror', 'rug',
'field', 'armchair', 'seat', 'fence', 'desk', 'rock', 'wardrobe',
'lamp', 'bathtub', 'railing', 'cushion', 'base', 'box', 'column',
'signboard', 'chest of drawers', 'counter', 'sand', 'sink',
'skyscraper', 'fireplace', 'refrigerator', 'grandstand', 'path',
'stairs', 'runway', 'case', 'pool table', 'pillow', 'screen door',
'stairway', 'river', 'bridge', 'bookcase', 'blind', 'coffee table',
'toilet', 'flower', 'book', 'hill', 'bench', 'countertop', 'stove',
'palm', 'kitchen island', 'computer', 'swivel chair', 'boat', 'bar',
'arcade machine', 'hovel', 'bus', 'towel', 'light', 'truck', 'tower',
'chandelier', 'awning', 'streetlight', 'booth', 'television receiver',
'airplane', 'dirt track', 'apparel', 'pole', 'land', 'bannister',
'escalator', 'ottoman', 'bottle', 'buffet', 'poster', 'stage', 'van',
'ship', 'fountain', 'conveyer belt', 'canopy', 'washer', 'plaything',
'swimming pool', 'stool', 'barrel', 'basket', 'waterfall', 'tent',
'bag', 'minibike', 'cradle', 'oven', 'ball', 'food', 'step', 'tank',
'trade name', 'microwave', 'pot', 'animal', 'bicycle', 'lake',
'dishwasher', 'screen', 'blanket', 'sculpture', 'hood', 'sconce',
'vase', 'traffic light', 'tray', 'ashcan', 'fan', 'pier', 'crt screen',
'plate', 'monitor', 'bulletin board', 'shower', 'radiator', 'glass',
'clock', 'flag'
]
LEGACY_SEGFORMER_LABELS = {k: i for i, k in enumerate(LEGACY_SEGFORMER_CLASSES)}
def write_rgbd_zip(
file: Union[IO, os.PathLike],
image: Union[np.ndarray, bytes],
depth: Union[np.ndarray, bytes], mask: Union[np.ndarray, bytes],
segmentation_mask: Union[np.ndarray, bytes] = None, segmentation_labels: Union[Dict[str, int], bytes] = None,
intrinsics: np.ndarray = None,
normal: np.ndarray = None, normal_mask: np.ndarray = None,
meta: Union[Dict[str, Any], bytes] = None,
*, image_quality: int = 95, depth_type: Literal['linear', 'log', 'disparity'] = 'linear', depth_format: Literal['png', 'exr'] = 'png', depth_max_dynamic_range: float = 1e4, png_compression: int = 7
):
"""
Write RGBD data as zip archive containing the image, depth, mask, segmentation_mask, and meta data.
In the zip file there will be:
- `meta.json`: The meta data as a JSON file.
- `image.jpg`: The RGB image as a JPEG file.
- `depth.png/exr`: The depth map as a PNG or EXR file, depending on the `depth_type`.
- `mask.png` (optional): The mask as a uint8 PNG file.
- `segmentation_mask.png` (optional): The segformer mask as a uint8/uint16 PNG file.
You can provided those data as np.ndarray or bytes. If you provide them as np.ndarray, they will be properly processed and encoded.
If you provide them as bytes, they will be written as is, assuming they are already encoded.
"""
if meta is None:
meta = {}
elif isinstance(meta, bytes):
meta = json.loads(meta.decode())
if isinstance(image, bytes):
image_bytes = image
elif isinstance(image, np.ndarray):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()
if isinstance(depth, bytes):
depth_bytes = depth
elif isinstance(depth, np.ndarray):
meta['depth_type'] = depth_type
if depth_type == 'linear':
if depth.dtype == np.float16:
depth_format = 'exr'
depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])[1].tobytes()
elif np.issubdtype(depth.dtype, np.floating):
depth_format = 'exr'
depth_bytes = cv2.imencode('.exr', depth.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
elif depth.dtype in [np.uint8, np.uint16]:
depth_format = 'png'
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
elif depth_type == 'log':
depth_format = 'png'
depth = depth.astype(np.float32)
near = max(depth[mask].min(), 1e-3)
far = min(depth[mask].max(), near * depth_max_dynamic_range)
depth = ((np.log(depth.clip(near, far) / near) / np.log(far / near)).clip(0, 1) * 65535).astype(np.uint16)
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
meta['depth_near'] = float(near)
meta['depth_far'] = float(far)
elif depth_type == 'disparity':
depth_format = 'png'
depth = depth.astype(np.float32)
depth = 1 / (depth + 1e-12)
depth = (depth / depth[mask].max()).clip(0, 1)
if np.unique(depth) < 200:
depth = (depth * 255).astype(np.uint8)
else:
depth = (depth * 65535).astype(np.uint16)
depth_bytes = cv2.imencode('.png', depth, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
if isinstance(mask, bytes):
mask_bytes = mask
elif isinstance(mask, np.ndarray):
mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()
if segmentation_mask is not None:
if isinstance(segmentation_mask, bytes):
segmentation_mask_bytes = segmentation_mask
else:
segmentation_mask_bytes = cv2.imencode('.png', segmentation_mask)[1].tobytes()
assert segmentation_labels is not None, "You provided a segmentation mask, but not the corresponding labels."
if isinstance(segmentation_labels, bytes):
segmentation_labels = json.loads(segmentation_labels)
meta['segmentation_labels'] = segmentation_labels
if intrinsics is not None:
meta['intrinsics'] = intrinsics.tolist()
if normal is not None:
if isinstance(normal, bytes):
normal_bytes = normal
elif isinstance(normal, np.ndarray):
normal = ((normal * [0.5, -0.5, -0.5] + 0.5).clip(0, 1) * 65535).astype(np.uint16)
normal = cv2.cvtColor(normal, cv2.COLOR_RGB2BGR)
normal_bytes = cv2.imencode('.png', normal, [cv2.IMWRITE_PNG_COMPRESSION, png_compression])[1].tobytes()
if normal_mask is None:
normal_mask = np.ones(image.shape[:2], dtype=bool)
normal_mask_bytes = cv2.imencode('.png', normal_mask.astype(np.uint8) * 255)[1].tobytes()
meta_bytes = meta if isinstance(meta, bytes) else json.dumps(meta).encode()
with zipfile.ZipFile(file, 'w') as z:
z.writestr('meta.json', meta_bytes)
z.writestr('image.jpg', image_bytes)
z.writestr(f'depth.{depth_format}', depth_bytes)
z.writestr('mask.png', mask_bytes)
if segmentation_mask is not None:
z.writestr('segmentation_mask.png', segmentation_mask_bytes)
if normal is not None:
z.writestr('normal.png', normal_bytes)
z.writestr('normal_mask.png', normal_mask_bytes)
def read_rgbd_zip(file: Union[str, Path, IO], return_bytes: bool = False) -> Dict[str, Union[np.ndarray, Dict[str, Any], bytes]]:
"""
Read an RGBD zip file and return the image, depth, mask, segmentation_mask, intrinsics, and meta data.
### Parameters:
- `file: Union[str, Path, IO]`
The file path or file object to read from.
- `return_bytes: bool = False`
If True, return the image, depth, mask, and segmentation_mask as raw bytes.
### Returns:
- `Tuple[Dict[str, Union[np.ndarray, Dict[str, Any]]], Dict[str, bytes]]`
A dictionary containing: (If missing, the value will be None; if return_bytes is True, the value will be bytes)
- `image`: RGB numpy.ndarray of shape (H, W, 3).
- `depth`: float32 numpy.ndarray of shape (H, W).
- `mask`: bool numpy.ndarray of shape (H, W).
- `segformer_mask`: uint8 numpy.ndarray of shape (H, W).
- `intrinsics`: float32 numpy.ndarray of shape (3, 3).
- `meta`: Dict[str, Any].
"""
# Load & extract archive
with zipfile.ZipFile(file, 'r') as z:
meta = z.read('meta.json')
if not return_bytes:
meta = json.loads(z.read('meta.json'))
image = z.read('image.jpg')
if not return_bytes:
image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
depth_name = next(s for s in z.namelist() if s.startswith('depth'))
depth = z.read(depth_name)
if not return_bytes:
depth = cv2.imdecode(np.frombuffer(z.read(depth_name), np.uint8), cv2.IMREAD_UNCHANGED)
if 'mask.png' in z.namelist():
mask = z.read('mask.png')
if not return_bytes:
mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
mask = None
if 'segformer_mask.png' in z.namelist():
# NOTE: Legacy support for segformer_mask.png
segmentation_mask = z.read('segformer_mask.png')
segmentation_labels = None
if not return_bytes:
segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
segmentation_labels = LEGACY_SEGFORMER_LABELS
elif 'segmentation_mask.png' in z.namelist():
segmentation_mask = z.read('segmentation_mask.png')
segmentation_labels = None
if not return_bytes:
segmentation_mask = cv2.imdecode(np.frombuffer(segmentation_mask, np.uint8), cv2.IMREAD_UNCHANGED)
segmentation_labels = meta['segmentation_labels']
else:
segmentation_mask = None
segmentation_labels = None
if 'normal.png' in z.namelist():
normal = z.read('normal.png')
if not return_bytes:
normal = cv2.imdecode(np.frombuffer(z.read('normal.png'), np.uint8), cv2.IMREAD_UNCHANGED)
normal = cv2.cvtColor(normal, cv2.COLOR_BGR2RGB)
normal = (normal.astype(np.float32) / 65535 - 0.5) * [2.0, -2.0, -2.0]
normal = normal / np.linalg.norm(normal, axis=-1, keepdims=True)
if 'normal_mask.png' in z.namelist():
normal_mask = z.read('normal_mask.png')
normal_mask = cv2.imdecode(np.frombuffer(normal_mask, np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
normal_mask = np.ones(image.shape[:2], dtype=bool)
else:
normal, normal_mask = None, None
# recover linear depth
if not return_bytes:
if mask is None:
mask = np.ones(image.shape[:2], dtype=bool)
if meta['depth_type'] == 'linear':
depth = depth.astype(np.float32)
mask = mask & (depth > 0)
elif meta['depth_type'] == 'log':
near, far = meta['depth_near'], meta['depth_far']
if depth.dtype == np.uint16:
depth = depth.astype(np.float32) / 65535
elif depth.dtype == np.uint8:
depth = depth.astype(np.float32) / 255
depth = near ** (1 - depth) * far ** depth
mask = mask & ~np.isnan(depth)
elif meta['depth_type'] == 'disparity':
mask = mask & (depth > 0)
if depth.dtype == np.uint16:
depth = depth.astype(np.float32) / 65535
elif depth.dtype == np.uint8:
depth = depth.astype(np.float32) / 255
depth = 1 / (depth + 1e-12)
# intrinsics
if not return_bytes and 'intrinsics' in meta:
intrinsics = np.array(meta['intrinsics'], dtype=np.float32)
else:
intrinsics = None
# depth unit
if not return_bytes and 'depth_unit' in meta:
depth_unit_str = meta['depth_unit']
if r := re.match(r'([\d.]*)(\w*)', depth_unit_str):
digits, unit = r.groups()
depth_unit = float(digits or 1) * {'m': 1, 'cm': 0.01, 'mm': 0.001}[unit]
else:
depth_unit = None
else:
depth_unit = None
return_dict = {
'image': image,
'depth': depth,
'mask': mask,
'segmentation_mask': segmentation_mask,
'segmentation_labels': segmentation_labels,
'normal': normal,
'normal_mask': normal_mask,
'intrinsics': intrinsics,
'depth_unit': depth_unit,
'meta': meta,
}
return_dict = {k: v for k, v in return_dict.items() if v is not None}
return return_dict
def write_rgbxyz(file: Union[IO, Path], image: np.ndarray, points: np.ndarray, mask: np.ndarray = None, image_quality: int = 95):
if isinstance(image, bytes):
image_bytes = image
elif isinstance(image, np.ndarray):
image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR)
image_bytes = cv2.imencode('.jpg', image, [cv2.IMWRITE_JPEG_QUALITY, image_quality])[1].tobytes()
if isinstance(points, bytes):
points_bytes = points
elif isinstance(points, np.ndarray):
points_bytes = cv2.imencode('.exr', points.astype(np.float32), [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_FLOAT])[1].tobytes()
if mask is None:
mask = np.ones(image.shape[:2], dtype=bool)
if isinstance(mask, bytes):
mask_bytes = mask
elif isinstance(mask, np.ndarray):
mask_bytes = cv2.imencode('.png', mask.astype(np.uint8) * 255)[1].tobytes()
is_archive = hasattr(file, 'write') or Path(file).suffix == '.zip'
if is_archive:
with zipfile.ZipFile(file, 'w') as z:
z.writestr('image.jpg', image_bytes)
z.writestr('points.exr', points_bytes)
if mask is not None:
z.writestr('mask.png', mask_bytes)
else:
file = Path(file)
file.mkdir(parents=True, exist_ok=True)
with open(file / 'image.jpg', 'wb') as f:
f.write(image_bytes)
with open(file / 'points.exr', 'wb') as f:
f.write(points_bytes)
if mask is not None:
with open(file / 'mask.png', 'wb') as f:
f.write(mask_bytes)
def read_rgbxyz(file: Union[IO, str, Path]) -> Tuple[np.ndarray, np.ndarray, np.ndarray, Dict[str, Any]]:
is_archive = hasattr(file, 'read') or Path(file).suffix == '.zip'
if is_archive:
with zipfile.ZipFile(file, 'r') as z:
image = cv2.imdecode(np.frombuffer(z.read('image.jpg'), np.uint8), cv2.IMREAD_COLOR)
points = cv2.imdecode(np.frombuffer(z.read('points.exr'), np.uint8), cv2.IMREAD_UNCHANGED)
if 'mask.png' in z.namelist():
mask = cv2.imdecode(np.frombuffer(z.read('mask.png'), np.uint8), cv2.IMREAD_UNCHANGED) > 0
else:
mask = np.ones(image.shape[:2], dtype=bool)
else:
file = Path(file)
file.mkdir(parents=True, exist_ok=True)
image = cv2.imread(str(file / 'image.jpg'), cv2.IMREAD_COLOR)
image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
points = cv2.imread(str(file / 'points.exr'), cv2.IMREAD_UNCHANGED)
if (file /'mask.png').exists():
mask = cv2.imread(str(file / 'mask.png'), cv2.IMREAD_UNCHANGED) > 0
else:
mask = np.ones(image.shape[:2], dtype=bool)
return image, points, mask