|
from typing import * |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.nn.functional as F |
|
|
|
def wrap_module_with_gradient_checkpointing(module: nn.Module): |
|
from torch.utils.checkpoint import checkpoint |
|
class _CheckpointingWrapper(module.__class__): |
|
_restore_cls = module.__class__ |
|
def forward(self, *args, **kwargs): |
|
return checkpoint(super().forward, *args, use_reentrant=False, **kwargs) |
|
|
|
module.__class__ = _CheckpointingWrapper |
|
return module |
|
|
|
|
|
def unwrap_module_with_gradient_checkpointing(module: nn.Module): |
|
module.__class__ = module.__class__._restore_cls |
|
|
|
|
|
def wrap_dinov2_attention_with_sdpa(module: nn.Module): |
|
assert torch.__version__ >= '2.0', "SDPA requires PyTorch 2.0 or later" |
|
class _AttentionWrapper(module.__class__): |
|
def forward(self, x: torch.Tensor, attn_bias=None) -> torch.Tensor: |
|
B, N, C = x.shape |
|
qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4) |
|
|
|
q, k, v = torch.unbind(qkv, 0) |
|
|
|
x = F.scaled_dot_product_attention(q, k, v, attn_bias) |
|
x = x.permute(0, 2, 1, 3).reshape(B, N, C) |
|
|
|
x = self.proj(x) |
|
x = self.proj_drop(x) |
|
return x |
|
module.__class__ = _AttentionWrapper |
|
return module |