|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from functools import partial |
|
import math |
|
import logging |
|
from typing import Sequence, Tuple, Union, Callable |
|
|
|
import torch |
|
import torch.nn as nn |
|
import torch.utils.checkpoint |
|
from torch.nn.init import trunc_normal_ |
|
|
|
from ..layers import Mlp, PatchEmbed, SwiGLUFFNFused, MemEffAttention, NestedTensorBlock as Block |
|
|
|
|
|
logger = logging.getLogger("dinov2") |
|
|
|
|
|
def named_apply(fn: Callable, module: nn.Module, name="", depth_first=True, include_root=False) -> nn.Module: |
|
if not depth_first and include_root: |
|
fn(module=module, name=name) |
|
for child_name, child_module in module.named_children(): |
|
child_name = ".".join((name, child_name)) if name else child_name |
|
named_apply(fn=fn, module=child_module, name=child_name, depth_first=depth_first, include_root=True) |
|
if depth_first and include_root: |
|
fn(module=module, name=name) |
|
return module |
|
|
|
|
|
class BlockChunk(nn.ModuleList): |
|
def forward(self, x): |
|
for b in self: |
|
x = b(x) |
|
return x |
|
|
|
|
|
class DinoVisionTransformer(nn.Module): |
|
def __init__( |
|
self, |
|
img_size=224, |
|
patch_size=16, |
|
in_chans=3, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4.0, |
|
qkv_bias=True, |
|
ffn_bias=True, |
|
proj_bias=True, |
|
drop_path_rate=0.0, |
|
drop_path_uniform=False, |
|
init_values=None, |
|
embed_layer=PatchEmbed, |
|
act_layer=nn.GELU, |
|
block_fn=Block, |
|
ffn_layer="mlp", |
|
block_chunks=1, |
|
num_register_tokens=0, |
|
interpolate_antialias=False, |
|
interpolate_offset=0.1, |
|
): |
|
""" |
|
Args: |
|
img_size (int, tuple): input image size |
|
patch_size (int, tuple): patch size |
|
in_chans (int): number of input channels |
|
embed_dim (int): embedding dimension |
|
depth (int): depth of transformer |
|
num_heads (int): number of attention heads |
|
mlp_ratio (int): ratio of mlp hidden dim to embedding dim |
|
qkv_bias (bool): enable bias for qkv if True |
|
proj_bias (bool): enable bias for proj in attn if True |
|
ffn_bias (bool): enable bias for ffn if True |
|
drop_path_rate (float): stochastic depth rate |
|
drop_path_uniform (bool): apply uniform drop rate across blocks |
|
weight_init (str): weight init scheme |
|
init_values (float): layer-scale init values |
|
embed_layer (nn.Module): patch embedding layer |
|
act_layer (nn.Module): MLP activation layer |
|
block_fn (nn.Module): transformer block class |
|
ffn_layer (str): "mlp", "swiglu", "swiglufused" or "identity" |
|
block_chunks: (int) split block sequence into block_chunks units for FSDP wrap |
|
num_register_tokens: (int) number of extra cls tokens (so-called "registers") |
|
interpolate_antialias: (str) flag to apply anti-aliasing when interpolating positional embeddings |
|
interpolate_offset: (float) work-around offset to apply when interpolating positional embeddings |
|
""" |
|
super().__init__() |
|
norm_layer = partial(nn.LayerNorm, eps=1e-6) |
|
|
|
self.num_features = self.embed_dim = embed_dim |
|
self.num_tokens = 1 |
|
self.n_blocks = depth |
|
self.num_heads = num_heads |
|
self.patch_size = patch_size |
|
self.num_register_tokens = num_register_tokens |
|
self.interpolate_antialias = interpolate_antialias |
|
self.interpolate_offset = interpolate_offset |
|
|
|
self.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_chans=in_chans, embed_dim=embed_dim) |
|
num_patches = self.patch_embed.num_patches |
|
|
|
self.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) |
|
self.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim)) |
|
assert num_register_tokens >= 0 |
|
self.register_tokens = ( |
|
nn.Parameter(torch.zeros(1, num_register_tokens, embed_dim)) if num_register_tokens else None |
|
) |
|
|
|
if drop_path_uniform is True: |
|
dpr = [drop_path_rate] * depth |
|
else: |
|
dpr = [x.item() for x in torch.linspace(0, drop_path_rate, depth)] |
|
|
|
if ffn_layer == "mlp": |
|
logger.info("using MLP layer as FFN") |
|
ffn_layer = Mlp |
|
elif ffn_layer == "swiglufused" or ffn_layer == "swiglu": |
|
logger.info("using SwiGLU layer as FFN") |
|
ffn_layer = SwiGLUFFNFused |
|
elif ffn_layer == "identity": |
|
logger.info("using Identity layer as FFN") |
|
|
|
def f(*args, **kwargs): |
|
return nn.Identity() |
|
|
|
ffn_layer = f |
|
else: |
|
raise NotImplementedError |
|
|
|
blocks_list = [ |
|
block_fn( |
|
dim=embed_dim, |
|
num_heads=num_heads, |
|
mlp_ratio=mlp_ratio, |
|
qkv_bias=qkv_bias, |
|
proj_bias=proj_bias, |
|
ffn_bias=ffn_bias, |
|
drop_path=dpr[i], |
|
norm_layer=norm_layer, |
|
act_layer=act_layer, |
|
ffn_layer=ffn_layer, |
|
init_values=init_values, |
|
) |
|
for i in range(depth) |
|
] |
|
if block_chunks > 0: |
|
self.chunked_blocks = True |
|
chunked_blocks = [] |
|
chunksize = depth // block_chunks |
|
for i in range(0, depth, chunksize): |
|
|
|
chunked_blocks.append([nn.Identity()] * i + blocks_list[i : i + chunksize]) |
|
self.blocks = nn.ModuleList([BlockChunk(p) for p in chunked_blocks]) |
|
else: |
|
self.chunked_blocks = False |
|
self.blocks = nn.ModuleList(blocks_list) |
|
|
|
self.norm = norm_layer(embed_dim) |
|
self.head = nn.Identity() |
|
|
|
self.mask_token = nn.Parameter(torch.zeros(1, embed_dim)) |
|
|
|
self.init_weights() |
|
|
|
def init_weights(self): |
|
trunc_normal_(self.pos_embed, std=0.02) |
|
nn.init.normal_(self.cls_token, std=1e-6) |
|
if self.register_tokens is not None: |
|
nn.init.normal_(self.register_tokens, std=1e-6) |
|
named_apply(init_weights_vit_timm, self) |
|
|
|
def interpolate_pos_encoding(self, x, w, h): |
|
previous_dtype = x.dtype |
|
npatch = x.shape[1] - 1 |
|
N = self.pos_embed.shape[1] - 1 |
|
if npatch == N and w == h: |
|
return self.pos_embed |
|
pos_embed = self.pos_embed.float() |
|
class_pos_embed = pos_embed[:, 0] |
|
patch_pos_embed = pos_embed[:, 1:] |
|
dim = x.shape[-1] |
|
w0 = w // self.patch_size |
|
h0 = h // self.patch_size |
|
M = int(math.sqrt(N)) |
|
assert N == M * M |
|
kwargs = {} |
|
if self.interpolate_offset: |
|
|
|
|
|
sx = float(w0 + self.interpolate_offset) / M |
|
sy = float(h0 + self.interpolate_offset) / M |
|
kwargs["scale_factor"] = (sx, sy) |
|
else: |
|
|
|
kwargs["size"] = (w0, h0) |
|
patch_pos_embed = nn.functional.interpolate( |
|
patch_pos_embed.reshape(1, M, M, dim).permute(0, 3, 1, 2), |
|
mode="bicubic", |
|
antialias=self.interpolate_antialias, |
|
**kwargs, |
|
) |
|
assert (w0, h0) == patch_pos_embed.shape[-2:] |
|
patch_pos_embed = patch_pos_embed.permute(0, 2, 3, 1).view(1, -1, dim) |
|
return torch.cat((class_pos_embed.unsqueeze(0), patch_pos_embed), dim=1).to(previous_dtype) |
|
|
|
def prepare_tokens_with_masks(self, x, masks=None): |
|
B, nc, w, h = x.shape |
|
x = self.patch_embed(x) |
|
if masks is not None: |
|
x = torch.where(masks.unsqueeze(-1), self.mask_token.to(x.dtype).unsqueeze(0), x) |
|
|
|
x = torch.cat((self.cls_token.expand(x.shape[0], -1, -1), x), dim=1) |
|
x = x + self.interpolate_pos_encoding(x, w, h) |
|
|
|
if self.register_tokens is not None: |
|
x = torch.cat( |
|
( |
|
x[:, :1], |
|
self.register_tokens.expand(x.shape[0], -1, -1), |
|
x[:, 1:], |
|
), |
|
dim=1, |
|
) |
|
|
|
return x |
|
|
|
def forward_features_list(self, x_list, masks_list): |
|
x = [self.prepare_tokens_with_masks(x, masks) for x, masks in zip(x_list, masks_list)] |
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
all_x = x |
|
output = [] |
|
for x, masks in zip(all_x, masks_list): |
|
x_norm = self.norm(x) |
|
output.append( |
|
{ |
|
"x_norm_clstoken": x_norm[:, 0], |
|
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], |
|
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], |
|
"x_prenorm": x, |
|
"masks": masks, |
|
} |
|
) |
|
return output |
|
|
|
def forward_features(self, x, masks=None): |
|
if isinstance(x, list): |
|
return self.forward_features_list(x, masks) |
|
|
|
x = self.prepare_tokens_with_masks(x, masks) |
|
|
|
for blk in self.blocks: |
|
x = blk(x) |
|
|
|
x_norm = self.norm(x) |
|
return { |
|
"x_norm_clstoken": x_norm[:, 0], |
|
"x_norm_regtokens": x_norm[:, 1 : self.num_register_tokens + 1], |
|
"x_norm_patchtokens": x_norm[:, self.num_register_tokens + 1 :], |
|
"x_prenorm": x, |
|
"masks": masks, |
|
} |
|
|
|
def _get_intermediate_layers_not_chunked(self, x, n=1): |
|
x = self.prepare_tokens_with_masks(x) |
|
|
|
output, total_block_len = [], len(self.blocks) |
|
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n |
|
for i, blk in enumerate(self.blocks): |
|
x = blk(x) |
|
if i in blocks_to_take: |
|
output.append(x) |
|
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" |
|
return output |
|
|
|
def _get_intermediate_layers_chunked(self, x, n=1): |
|
x = self.prepare_tokens_with_masks(x) |
|
output, i, total_block_len = [], 0, len(self.blocks[-1]) |
|
|
|
blocks_to_take = range(total_block_len - n, total_block_len) if isinstance(n, int) else n |
|
for block_chunk in self.blocks: |
|
for blk in block_chunk[i:]: |
|
x = blk(x) |
|
if i in blocks_to_take: |
|
output.append(x) |
|
i += 1 |
|
assert len(output) == len(blocks_to_take), f"only {len(output)} / {len(blocks_to_take)} blocks found" |
|
return output |
|
|
|
def get_intermediate_layers( |
|
self, |
|
x: torch.Tensor, |
|
n: Union[int, Sequence] = 1, |
|
reshape: bool = False, |
|
return_class_token: bool = False, |
|
norm=True, |
|
) -> Tuple[Union[torch.Tensor, Tuple[torch.Tensor]]]: |
|
if self.chunked_blocks: |
|
outputs = self._get_intermediate_layers_chunked(x, n) |
|
else: |
|
outputs = self._get_intermediate_layers_not_chunked(x, n) |
|
if norm: |
|
outputs = [self.norm(out) for out in outputs] |
|
class_tokens = [out[:, 0] for out in outputs] |
|
outputs = [out[:, 1 + self.num_register_tokens :] for out in outputs] |
|
if reshape: |
|
B, _, w, h = x.shape |
|
outputs = [ |
|
out.reshape(B, w // self.patch_size, h // self.patch_size, -1).permute(0, 3, 1, 2).contiguous() |
|
for out in outputs |
|
] |
|
if return_class_token: |
|
return tuple(zip(outputs, class_tokens)) |
|
return tuple(outputs) |
|
|
|
def forward(self, *args, is_training=False, **kwargs): |
|
ret = self.forward_features(*args, **kwargs) |
|
if is_training: |
|
return ret |
|
else: |
|
return self.head(ret["x_norm_clstoken"]) |
|
|
|
|
|
def init_weights_vit_timm(module: nn.Module, name: str = ""): |
|
"""ViT weight initialization, original timm impl (for reproducibility)""" |
|
if isinstance(module, nn.Linear): |
|
trunc_normal_(module.weight, std=0.02) |
|
if module.bias is not None: |
|
nn.init.zeros_(module.bias) |
|
|
|
|
|
def vit_small(patch_size=16, num_register_tokens=0, **kwargs): |
|
model = DinoVisionTransformer( |
|
patch_size=patch_size, |
|
embed_dim=384, |
|
depth=12, |
|
num_heads=6, |
|
mlp_ratio=4, |
|
block_fn=partial(Block, attn_class=MemEffAttention), |
|
num_register_tokens=num_register_tokens, |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def vit_base(patch_size=16, num_register_tokens=0, **kwargs): |
|
model = DinoVisionTransformer( |
|
patch_size=patch_size, |
|
embed_dim=768, |
|
depth=12, |
|
num_heads=12, |
|
mlp_ratio=4, |
|
block_fn=partial(Block, attn_class=MemEffAttention), |
|
num_register_tokens=num_register_tokens, |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def vit_large(patch_size=16, num_register_tokens=0, **kwargs): |
|
model = DinoVisionTransformer( |
|
patch_size=patch_size, |
|
embed_dim=1024, |
|
depth=24, |
|
num_heads=16, |
|
mlp_ratio=4, |
|
block_fn=partial(Block, attn_class=MemEffAttention), |
|
num_register_tokens=num_register_tokens, |
|
**kwargs, |
|
) |
|
return model |
|
|
|
|
|
def vit_giant2(patch_size=16, num_register_tokens=0, **kwargs): |
|
""" |
|
Close to ViT-giant, with embed-dim 1536 and 24 heads => embed-dim per head 64 |
|
""" |
|
model = DinoVisionTransformer( |
|
patch_size=patch_size, |
|
embed_dim=1536, |
|
depth=40, |
|
num_heads=24, |
|
mlp_ratio=4, |
|
block_fn=partial(Block, attn_class=MemEffAttention), |
|
num_register_tokens=num_register_tokens, |
|
**kwargs, |
|
) |
|
return model |
|
|