MoGe / moge /utils /geometry_torch.py
Ruicheng's picture
first commit
ec0c8fa
raw
history blame
12.2 kB
from typing import *
import math
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d
from .tools import timeit
from .geometry_numpy import solve_optimal_shift_focal
def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.mean(dim=dim, keepdim=keepdim)
else:
w = w.to(x.dtype)
return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)
def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()
def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).log().mean(dim=dim).exp()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()
def image_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
u, v = torch.meshgrid(u, v, indexing='xy')
uv = torch.stack([u, v], dim=-1)
return uv
def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
kernel = kernel / kernel.sum()
kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
input = F.conv2d(input, kernel, groups=input.shape[1])
return input
def split_batch_fwd(fn: Callable, chunk_size: int, *args, **kwargs):
batch_size = next(x for x in (*args, *kwargs.values()) if isinstance(x, torch.Tensor)).shape[0]
n_chunks = batch_size // chunk_size + (batch_size % chunk_size > 0)
splited_args = tuple(arg.split(chunk_size, dim=0) if isinstance(arg, torch.Tensor) else [arg] * n_chunks for arg in args)
splited_kwargs = {k: [v.split(chunk_size, dim=0) if isinstance(v, torch.Tensor) else [v] * n_chunks] for k, v in kwargs.items()}
results = []
for i in range(n_chunks):
chunk_args = tuple(arg[i] for arg in splited_args)
chunk_kwargs = {k: v[i] for k, v in splited_kwargs.items()}
results.append(fn(*chunk_args, **chunk_kwargs))
if isinstance(results[0], tuple):
return tuple(torch.cat(r, dim=0) for r in zip(*results))
else:
return torch.cat(results, dim=0)
def focal_to_fov(focal: torch.Tensor):
return 2 * torch.atan(0.5 / focal)
def fov_to_focal(fov: torch.Tensor):
return 0.5 / torch.tan(fov / 2)
def intrinsics_to_fov(intrinsics: torch.Tensor):
"""
Returns field of view in radians from normalized intrinsics matrix.
### Parameters:
- intrinsics: torch.Tensor of shape (..., 3, 3)
### Returns:
- fov_x: torch.Tensor of shape (...)
- fov_y: torch.Tensor of shape (...)
"""
focal_x = intrinsics[..., 0, 0]
focal_y = intrinsics[..., 1, 1]
return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)
def point_map_to_depth_legacy(points: torch.Tensor):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
# Solve least squares problem
b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2)
A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2)
M = A.transpose(-2, -1) @ A
solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution.unbind(-1)
depth = points[..., 2] + shift[..., None, None]
fov_x = torch.atan(width / diagonal / focal) * 2
fov_y = torch.atan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def point_map_to_depth(points: torch.Tensor, mask: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
"""
Recover the depth map and FoV from a point map with unknown z shift and focal.
Note that it assumes:
- the optical center is at the center of the map
- the map is undistorted
- the map is isometric in the x and y directions
### Parameters:
- `points: torch.Tensor` of shape (..., H, W, 3)
- `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.
### Returns:
- `depth: torch.Tensor` of shape (..., H, W)
- `fov_x: torch.Tensor` of shape (...)
- `fov_y: torch.Tensor` of shape (...)
- `shift: torch.Tensor` of shape (...), the z shift, making `depth = points[..., 2] + shift`
"""
shape = points.shape
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
points = points.reshape(-1, *shape[-3:])
mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
uv_lr_np = uv_lr.cpu().numpy()
points_lr_np = points_lr.detach().cpu().numpy()
mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
optim_shift, optim_focal = [], []
for i in range(points.shape[0]):
points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
optim_shift_i, optim_focal_i = solve_optimal_shift_focal(uv_lr_i_np, points_lr_i_np, ransac_iters=None)
optim_shift.append(float(optim_shift_i))
optim_focal.append(float(optim_focal_i))
optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype)
optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype)
fov_x = 2 * torch.atan(width / diagonal / optim_focal)
fov_y = 2 * torch.atan(height / diagonal / optim_focal)
depth = (points[..., 2] + optim_shift[:, None, None]).reshape(shape[:-1])
fov_x = fov_x.reshape(shape[:-3])
fov_y = fov_y.reshape(shape[:-3])
optim_shift = optim_shift.reshape(shape[:-3])
return depth, fov_x, fov_y, optim_shift
def mask_aware_nearest_resize(mask: torch.BoolTensor, target_width: int, target_height: int) -> Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `mask`: Input 2D mask of shape (..., H, W)
- `target_width`: target width of the resized map
- `target_height`: target height of the resized map
### Returns
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
"""
height, width = mask.shape[-2:]
device = mask.device
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2)
# Window the original mask and uv
uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))
# Gather the target pixels's local window
target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
target_corner = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
target_corner = torch.round(target_corner - 0.5).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)
target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
target_window_indices = target_window_indices.expand_as(target_window_mask)
# Compute nearest neighbor in the local window for each pixel
dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size)
nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1)
nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width)
target_mask = torch.any(target_window_mask, dim=-1)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]
return (*batch_indices, nearest_i, nearest_j), target_mask