|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
from typing import Callable, Optional, Tuple, Union |
|
|
|
from torch import Tensor |
|
import torch.nn as nn |
|
|
|
|
|
def make_2tuple(x): |
|
if isinstance(x, tuple): |
|
assert len(x) == 2 |
|
return x |
|
|
|
assert isinstance(x, int) |
|
return (x, x) |
|
|
|
|
|
class PatchEmbed(nn.Module): |
|
""" |
|
2D image to patch embedding: (B,C,H,W) -> (B,N,D) |
|
|
|
Args: |
|
img_size: Image size. |
|
patch_size: Patch token size. |
|
in_chans: Number of input image channels. |
|
embed_dim: Number of linear projection output channels. |
|
norm_layer: Normalization layer. |
|
""" |
|
|
|
def __init__( |
|
self, |
|
img_size: Union[int, Tuple[int, int]] = 224, |
|
patch_size: Union[int, Tuple[int, int]] = 16, |
|
in_chans: int = 3, |
|
embed_dim: int = 768, |
|
norm_layer: Optional[Callable] = None, |
|
flatten_embedding: bool = True, |
|
) -> None: |
|
super().__init__() |
|
|
|
image_HW = make_2tuple(img_size) |
|
patch_HW = make_2tuple(patch_size) |
|
patch_grid_size = ( |
|
image_HW[0] // patch_HW[0], |
|
image_HW[1] // patch_HW[1], |
|
) |
|
|
|
self.img_size = image_HW |
|
self.patch_size = patch_HW |
|
self.patches_resolution = patch_grid_size |
|
self.num_patches = patch_grid_size[0] * patch_grid_size[1] |
|
|
|
self.in_chans = in_chans |
|
self.embed_dim = embed_dim |
|
|
|
self.flatten_embedding = flatten_embedding |
|
|
|
self.proj = nn.Conv2d(in_chans, embed_dim, kernel_size=patch_HW, stride=patch_HW) |
|
self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity() |
|
|
|
def forward(self, x: Tensor) -> Tensor: |
|
_, _, H, W = x.shape |
|
patch_H, patch_W = self.patch_size |
|
|
|
assert H % patch_H == 0, f"Input image height {H} is not a multiple of patch height {patch_H}" |
|
assert W % patch_W == 0, f"Input image width {W} is not a multiple of patch width: {patch_W}" |
|
|
|
x = self.proj(x) |
|
H, W = x.size(2), x.size(3) |
|
x = x.flatten(2).transpose(1, 2) |
|
x = self.norm(x) |
|
if not self.flatten_embedding: |
|
x = x.reshape(-1, H, W, self.embed_dim) |
|
return x |
|
|
|
def flops(self) -> float: |
|
Ho, Wo = self.patches_resolution |
|
flops = Ho * Wo * self.embed_dim * self.in_chans * (self.patch_size[0] * self.patch_size[1]) |
|
if self.norm is not None: |
|
flops += Ho * Wo * self.embed_dim |
|
return flops |
|
|