|
|
|
|
|
|
|
|
|
|
|
from enum import Enum |
|
from typing import Union |
|
|
|
import torch |
|
|
|
from .utils import _DINOV2_BASE_URL, _make_dinov2_model_name |
|
|
|
|
|
class Weights(Enum): |
|
LVD142M = "LVD142M" |
|
|
|
|
|
def _make_dinov2_model( |
|
*, |
|
arch_name: str = "vit_large", |
|
img_size: int = 518, |
|
patch_size: int = 14, |
|
init_values: float = 1.0, |
|
ffn_layer: str = "mlp", |
|
block_chunks: int = 0, |
|
num_register_tokens: int = 0, |
|
interpolate_antialias: bool = False, |
|
interpolate_offset: float = 0.1, |
|
pretrained: bool = True, |
|
weights: Union[Weights, str] = Weights.LVD142M, |
|
**kwargs, |
|
): |
|
from ..models import vision_transformer as vits |
|
|
|
if isinstance(weights, str): |
|
try: |
|
weights = Weights[weights] |
|
except KeyError: |
|
raise AssertionError(f"Unsupported weights: {weights}") |
|
|
|
model_base_name = _make_dinov2_model_name(arch_name, patch_size) |
|
vit_kwargs = dict( |
|
img_size=img_size, |
|
patch_size=patch_size, |
|
init_values=init_values, |
|
ffn_layer=ffn_layer, |
|
block_chunks=block_chunks, |
|
num_register_tokens=num_register_tokens, |
|
interpolate_antialias=interpolate_antialias, |
|
interpolate_offset=interpolate_offset, |
|
) |
|
vit_kwargs.update(**kwargs) |
|
model = vits.__dict__[arch_name](**vit_kwargs) |
|
|
|
if pretrained: |
|
model_full_name = _make_dinov2_model_name(arch_name, patch_size, num_register_tokens) |
|
url = _DINOV2_BASE_URL + f"/{model_base_name}/{model_full_name}_pretrain.pth" |
|
state_dict = torch.hub.load_state_dict_from_url(url, map_location="cpu") |
|
model.load_state_dict(state_dict, strict=True) |
|
|
|
return model |
|
|
|
|
|
def dinov2_vits14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-S/14 model (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model(arch_name="vit_small", pretrained=pretrained, weights=weights, **kwargs) |
|
|
|
|
|
def dinov2_vitb14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-B/14 model (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model(arch_name="vit_base", pretrained=pretrained, weights=weights, **kwargs) |
|
|
|
|
|
def dinov2_vitl14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-L/14 model (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model(arch_name="vit_large", pretrained=pretrained, weights=weights, **kwargs) |
|
|
|
|
|
def dinov2_vitg14(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-g/14 model (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model( |
|
arch_name="vit_giant2", |
|
ffn_layer="swiglufused", |
|
weights=weights, |
|
pretrained=pretrained, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vits14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-S/14 model with registers (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model( |
|
arch_name="vit_small", |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitb14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-B/14 model with registers (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model( |
|
arch_name="vit_base", |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitl14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-L/14 model with registers (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model( |
|
arch_name="vit_large", |
|
pretrained=pretrained, |
|
weights=weights, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|
|
|
|
def dinov2_vitg14_reg(*, pretrained: bool = True, weights: Union[Weights, str] = Weights.LVD142M, **kwargs): |
|
""" |
|
DINOv2 ViT-g/14 model with registers (optionally) pretrained on the LVD-142M dataset. |
|
""" |
|
return _make_dinov2_model( |
|
arch_name="vit_giant2", |
|
ffn_layer="swiglufused", |
|
weights=weights, |
|
pretrained=pretrained, |
|
num_register_tokens=4, |
|
interpolate_antialias=True, |
|
interpolate_offset=0.0, |
|
**kwargs, |
|
) |
|
|