File size: 12,150 Bytes
ec0c8fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
from typing import *
import math
from collections import namedtuple

import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d

from .tools import timeit
from .geometry_numpy import solve_optimal_shift_focal


def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.mean(dim=dim, keepdim=keepdim)
    else:
        w = w.to(x.dtype)
        return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)


def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
    else:
        w = w.to(x.dtype)
        return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()


def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
    if w is None:
        return x.add(eps).log().mean(dim=dim).exp()
    else:
        w = w.to(x.dtype)
        return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()


def image_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
    "UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
    if aspect_ratio is None:
        aspect_ratio = width / height
    
    span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
    span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5

    u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
    v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
    u, v = torch.meshgrid(u, v, indexing='xy')
    uv = torch.stack([u, v], dim=-1)
    return uv


def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
    kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
    kernel = kernel / kernel.sum()
    kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
    input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
    input = F.conv2d(input, kernel, groups=input.shape[1])
    return input


def split_batch_fwd(fn: Callable, chunk_size: int, *args, **kwargs):
    batch_size = next(x for x in (*args, *kwargs.values()) if isinstance(x, torch.Tensor)).shape[0]
    n_chunks = batch_size // chunk_size + (batch_size % chunk_size > 0)
    splited_args = tuple(arg.split(chunk_size, dim=0) if isinstance(arg, torch.Tensor) else [arg] * n_chunks for arg in args)
    splited_kwargs = {k: [v.split(chunk_size, dim=0) if isinstance(v, torch.Tensor) else [v] * n_chunks] for k, v in kwargs.items()}
    results = []
    for i in range(n_chunks):
        chunk_args = tuple(arg[i] for arg in splited_args)
        chunk_kwargs = {k: v[i] for k, v in splited_kwargs.items()}
        results.append(fn(*chunk_args, **chunk_kwargs))

    if isinstance(results[0], tuple):
        return tuple(torch.cat(r, dim=0) for r in zip(*results))
    else:
        return torch.cat(results, dim=0)


def focal_to_fov(focal: torch.Tensor):
    return 2 * torch.atan(0.5 / focal)


def fov_to_focal(fov: torch.Tensor):
    return 0.5 / torch.tan(fov / 2)


def intrinsics_to_fov(intrinsics: torch.Tensor):
    """
    Returns field of view in radians from normalized intrinsics matrix.
    ### Parameters:
    - intrinsics: torch.Tensor of shape (..., 3, 3)

    ### Returns:
    - fov_x: torch.Tensor of shape (...)
    - fov_y: torch.Tensor of shape (...)
    """
    focal_x = intrinsics[..., 0, 0]
    focal_y = intrinsics[..., 1, 1]
    return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)


def point_map_to_depth_legacy(points: torch.Tensor):
    height, width = points.shape[-3:-1]
    diagonal = (height ** 2 + width ** 2) ** 0.5
    uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device)  # (H, W, 2)

    # Solve least squares problem
    b = (uv * points[..., 2:]).flatten(-3, -1)                        # (..., H * W * 2)
    A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2)   # (..., H * W * 2, 2)

    M = A.transpose(-2, -1) @ A 
    solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
    focal, shift = solution.unbind(-1)

    depth = points[..., 2] + shift[..., None, None]
    fov_x = torch.atan(width / diagonal / focal) * 2
    fov_y = torch.atan(height / diagonal / focal) * 2
    return depth, fov_x, fov_y, shift


def point_map_to_depth(points: torch.Tensor, mask: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
    """
    Recover the depth map and FoV from a point map with unknown z shift and focal.

    Note that it assumes:
    - the optical center is at the center of the map
    - the map is undistorted
    - the map is isometric in the x and y directions

    ### Parameters:
    - `points: torch.Tensor` of shape (..., H, W, 3)
    - `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.

    ### Returns:
    - `depth: torch.Tensor` of shape (..., H, W)
    - `fov_x: torch.Tensor` of shape (...)
    - `fov_y: torch.Tensor` of shape (...)
    - `shift: torch.Tensor` of shape (...), the z shift, making `depth = points[..., 2] + shift`
    """
    shape = points.shape
    height, width = points.shape[-3], points.shape[-2]
    diagonal = (height ** 2 + width ** 2) ** 0.5

    points = points.reshape(-1, *shape[-3:])
    mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
    uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device)  # (H, W, 2)

    points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
    uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
    mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
    
    uv_lr_np = uv_lr.cpu().numpy()
    points_lr_np = points_lr.detach().cpu().numpy()
    mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
    optim_shift, optim_focal = [], []
    for i in range(points.shape[0]):
        points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
        uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
        optim_shift_i, optim_focal_i = solve_optimal_shift_focal(uv_lr_i_np, points_lr_i_np, ransac_iters=None)
        optim_shift.append(float(optim_shift_i))
        optim_focal.append(float(optim_focal_i))
    optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype)
    optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype)

    fov_x = 2 * torch.atan(width / diagonal / optim_focal)
    fov_y = 2 * torch.atan(height / diagonal / optim_focal)
    
    depth = (points[..., 2] + optim_shift[:, None, None]).reshape(shape[:-1])
    fov_x = fov_x.reshape(shape[:-3])
    fov_y = fov_y.reshape(shape[:-3])
    optim_shift = optim_shift.reshape(shape[:-3])

    return depth, fov_x, fov_y, optim_shift


def mask_aware_nearest_resize(mask: torch.BoolTensor, target_width: int, target_height: int) -> Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]:
    """
    Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.

    ### Parameters
    - `mask`: Input 2D mask of shape (..., H, W)
    - `target_width`: target width of the resized map
    - `target_height`: target height of the resized map

    ### Returns
    - `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension
    - `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
    """
    height, width = mask.shape[-2:]
    device = mask.device
    filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
    filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
    filter_size = filter_h_i * filter_w_i
    padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2)

    # Window the original mask and uv
    uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
    indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
    padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
    padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
    padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
    padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
    padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
    padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
    windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
    windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
    windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))

    # Gather the target pixels's local window
    target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
    target_corner = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
    target_corner = torch.round(target_corner - 0.5).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)

    target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size)                          # (target_height, tgt_width, 2, filter_size)
    target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size)     # (..., target_height, tgt_width, filter_size)
    target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size)                      # (target_height, tgt_width, filter_size)
    target_window_indices = target_window_indices.expand_as(target_window_mask)

    # Compute nearest neighbor in the local window for each pixel 
    dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf)  # (..., target_height, tgt_width, filter_size)
    nearest = torch.argmin(dist, dim=-1, keepdim=True)                                                              # (..., target_height, tgt_width, 1)
    nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1)                            # (..., target_height, tgt_width)
    target_mask = torch.any(target_window_mask, dim=-1)
    nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
    batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]

    return (*batch_indices, nearest_i, nearest_j), target_mask