File size: 12,150 Bytes
ec0c8fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 |
from typing import *
import math
from collections import namedtuple
import numpy as np
import torch
import torch.nn as nn
import torch.nn.functional as F
import torch.types
import utils3d
from .tools import timeit
from .geometry_numpy import solve_optimal_shift_focal
def weighted_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.mean(dim=dim, keepdim=keepdim)
else:
w = w.to(x.dtype)
return (x * w).mean(dim=dim, keepdim=keepdim) / w.mean(dim=dim, keepdim=keepdim).add(eps)
def harmonic_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).reciprocal().mean(dim=dim, keepdim=keepdim).reciprocal()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).reciprocal(), w, dim=dim, keepdim=keepdim, eps=eps).add(eps).reciprocal()
def geometric_mean(x: torch.Tensor, w: torch.Tensor = None, dim: Union[int, torch.Size] = None, keepdim: bool = False, eps: float = 1e-7) -> torch.Tensor:
if w is None:
return x.add(eps).log().mean(dim=dim).exp()
else:
w = w.to(x.dtype)
return weighted_mean(x.add(eps).log(), w, dim=dim, keepdim=keepdim, eps=eps).exp()
def image_plane_uv(width: int, height: int, aspect_ratio: float = None, dtype: torch.dtype = None, device: torch.device = None) -> torch.Tensor:
"UV with left-top corner as (-width / diagonal, -height / diagonal) and right-bottom corner as (width / diagonal, height / diagonal)"
if aspect_ratio is None:
aspect_ratio = width / height
span_x = aspect_ratio / (1 + aspect_ratio ** 2) ** 0.5
span_y = 1 / (1 + aspect_ratio ** 2) ** 0.5
u = torch.linspace(-span_x * (width - 1) / width, span_x * (width - 1) / width, width, dtype=dtype, device=device)
v = torch.linspace(-span_y * (height - 1) / height, span_y * (height - 1) / height, height, dtype=dtype, device=device)
u, v = torch.meshgrid(u, v, indexing='xy')
uv = torch.stack([u, v], dim=-1)
return uv
def gaussian_blur_2d(input: torch.Tensor, kernel_size: int, sigma: float) -> torch.Tensor:
kernel = torch.exp(-(torch.arange(-kernel_size // 2 + 1, kernel_size // 2 + 1, dtype=input.dtype, device=input.device) ** 2) / (2 * sigma ** 2))
kernel = kernel / kernel.sum()
kernel = (kernel[:, None] * kernel[None, :]).reshape(1, 1, kernel_size, kernel_size)
input = F.pad(input, (kernel_size // 2, kernel_size // 2, kernel_size // 2, kernel_size // 2), mode='replicate')
input = F.conv2d(input, kernel, groups=input.shape[1])
return input
def split_batch_fwd(fn: Callable, chunk_size: int, *args, **kwargs):
batch_size = next(x for x in (*args, *kwargs.values()) if isinstance(x, torch.Tensor)).shape[0]
n_chunks = batch_size // chunk_size + (batch_size % chunk_size > 0)
splited_args = tuple(arg.split(chunk_size, dim=0) if isinstance(arg, torch.Tensor) else [arg] * n_chunks for arg in args)
splited_kwargs = {k: [v.split(chunk_size, dim=0) if isinstance(v, torch.Tensor) else [v] * n_chunks] for k, v in kwargs.items()}
results = []
for i in range(n_chunks):
chunk_args = tuple(arg[i] for arg in splited_args)
chunk_kwargs = {k: v[i] for k, v in splited_kwargs.items()}
results.append(fn(*chunk_args, **chunk_kwargs))
if isinstance(results[0], tuple):
return tuple(torch.cat(r, dim=0) for r in zip(*results))
else:
return torch.cat(results, dim=0)
def focal_to_fov(focal: torch.Tensor):
return 2 * torch.atan(0.5 / focal)
def fov_to_focal(fov: torch.Tensor):
return 0.5 / torch.tan(fov / 2)
def intrinsics_to_fov(intrinsics: torch.Tensor):
"""
Returns field of view in radians from normalized intrinsics matrix.
### Parameters:
- intrinsics: torch.Tensor of shape (..., 3, 3)
### Returns:
- fov_x: torch.Tensor of shape (...)
- fov_y: torch.Tensor of shape (...)
"""
focal_x = intrinsics[..., 0, 0]
focal_y = intrinsics[..., 1, 1]
return 2 * torch.atan(0.5 / focal_x), 2 * torch.atan(0.5 / focal_y)
def point_map_to_depth_legacy(points: torch.Tensor):
height, width = points.shape[-3:-1]
diagonal = (height ** 2 + width ** 2) ** 0.5
uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
# Solve least squares problem
b = (uv * points[..., 2:]).flatten(-3, -1) # (..., H * W * 2)
A = torch.stack([points[..., :2], -uv.expand_as(points[..., :2])], dim=-1).flatten(-4, -2) # (..., H * W * 2, 2)
M = A.transpose(-2, -1) @ A
solution = (torch.inverse(M + 1e-6 * torch.eye(2).to(A)) @ (A.transpose(-2, -1) @ b[..., None])).squeeze(-1)
focal, shift = solution.unbind(-1)
depth = points[..., 2] + shift[..., None, None]
fov_x = torch.atan(width / diagonal / focal) * 2
fov_y = torch.atan(height / diagonal / focal) * 2
return depth, fov_x, fov_y, shift
def point_map_to_depth(points: torch.Tensor, mask: torch.Tensor = None, downsample_size: Tuple[int, int] = (64, 64)):
"""
Recover the depth map and FoV from a point map with unknown z shift and focal.
Note that it assumes:
- the optical center is at the center of the map
- the map is undistorted
- the map is isometric in the x and y directions
### Parameters:
- `points: torch.Tensor` of shape (..., H, W, 3)
- `downsample_size: Tuple[int, int]` in (height, width), the size of the downsampled map. Downsampling produces approximate solution and is efficient for large maps.
### Returns:
- `depth: torch.Tensor` of shape (..., H, W)
- `fov_x: torch.Tensor` of shape (...)
- `fov_y: torch.Tensor` of shape (...)
- `shift: torch.Tensor` of shape (...), the z shift, making `depth = points[..., 2] + shift`
"""
shape = points.shape
height, width = points.shape[-3], points.shape[-2]
diagonal = (height ** 2 + width ** 2) ** 0.5
points = points.reshape(-1, *shape[-3:])
mask = None if mask is None else mask.reshape(-1, *shape[-3:-1])
uv = image_plane_uv(width, height, dtype=points.dtype, device=points.device) # (H, W, 2)
points_lr = F.interpolate(points.permute(0, 3, 1, 2), downsample_size, mode='nearest').permute(0, 2, 3, 1)
uv_lr = F.interpolate(uv.unsqueeze(0).permute(0, 3, 1, 2), downsample_size, mode='nearest').squeeze(0).permute(1, 2, 0)
mask_lr = None if mask is None else F.interpolate(mask.to(torch.float32).unsqueeze(1), downsample_size, mode='nearest').squeeze(1) > 0
uv_lr_np = uv_lr.cpu().numpy()
points_lr_np = points_lr.detach().cpu().numpy()
mask_lr_np = None if mask is None else mask_lr.cpu().numpy()
optim_shift, optim_focal = [], []
for i in range(points.shape[0]):
points_lr_i_np = points_lr_np[i] if mask is None else points_lr_np[i][mask_lr_np[i]]
uv_lr_i_np = uv_lr_np if mask is None else uv_lr_np[mask_lr_np[i]]
optim_shift_i, optim_focal_i = solve_optimal_shift_focal(uv_lr_i_np, points_lr_i_np, ransac_iters=None)
optim_shift.append(float(optim_shift_i))
optim_focal.append(float(optim_focal_i))
optim_shift = torch.tensor(optim_shift, device=points.device, dtype=points.dtype)
optim_focal = torch.tensor(optim_focal, device=points.device, dtype=points.dtype)
fov_x = 2 * torch.atan(width / diagonal / optim_focal)
fov_y = 2 * torch.atan(height / diagonal / optim_focal)
depth = (points[..., 2] + optim_shift[:, None, None]).reshape(shape[:-1])
fov_x = fov_x.reshape(shape[:-3])
fov_y = fov_y.reshape(shape[:-3])
optim_shift = optim_shift.reshape(shape[:-3])
return depth, fov_x, fov_y, optim_shift
def mask_aware_nearest_resize(mask: torch.BoolTensor, target_width: int, target_height: int) -> Tuple[torch.LongTensor, torch.LongTensor, torch.BoolTensor]:
"""
Resize 2D map by nearest interpolation. Return the nearest neighbor index and mask of the resized map.
### Parameters
- `mask`: Input 2D mask of shape (..., H, W)
- `target_width`: target width of the resized map
- `target_height`: target height of the resized map
### Returns
- `nearest_idx`: Nearest neighbor index of the resized map of shape (..., target_height, target_width) for each dimension
- `target_mask`: Mask of the resized map of shape (..., target_height, target_width)
"""
height, width = mask.shape[-2:]
device = mask.device
filter_h_f, filter_w_f = max(1, height / target_height), max(1, width / target_width)
filter_h_i, filter_w_i = math.ceil(filter_h_f), math.ceil(filter_w_f)
filter_size = filter_h_i * filter_w_i
padding_h, padding_w = round(filter_h_f / 2), round(filter_w_f / 2)
# Window the original mask and uv
uv = utils3d.torch.image_pixel_center(width=width, height=height, dtype=torch.float32, device=device)
indices = torch.arange(height * width, dtype=torch.long, device=device).reshape(height, width)
padded_uv = torch.full((height + 2 * padding_h, width + 2 * padding_w, 2), 0, dtype=torch.float32, device=device)
padded_uv[padding_h:padding_h + height, padding_w:padding_w + width] = uv
padded_mask = torch.full((*mask.shape[:-2], height + 2 * padding_h, width + 2 * padding_w), False, dtype=torch.bool, device=device)
padded_mask[..., padding_h:padding_h + height, padding_w:padding_w + width] = mask
padded_indices = torch.full((height + 2 * padding_h, width + 2 * padding_w), 0, dtype=torch.long, device=device)
padded_indices[padding_h:padding_h + height, padding_w:padding_w + width] = indices
windowed_uv = utils3d.torch.sliding_window_2d(padded_uv, (filter_h_i, filter_w_i), 1, dim=(0, 1))
windowed_mask = utils3d.torch.sliding_window_2d(padded_mask, (filter_h_i, filter_w_i), 1, dim=(-2, -1))
windowed_indices = utils3d.torch.sliding_window_2d(padded_indices, (filter_h_i, filter_w_i), 1, dim=(0, 1))
# Gather the target pixels's local window
target_uv = utils3d.torch.image_uv(width=target_width, height=target_height, dtype=torch.float32, device=device) * torch.tensor([width, height], dtype=torch.float32, device=device)
target_corner = target_uv - torch.tensor((filter_w_f / 2, filter_h_f / 2), dtype=torch.float32, device=device)
target_corner = torch.round(target_corner - 0.5).long() + torch.tensor((padding_w, padding_h), dtype=torch.long, device=device)
target_window_uv = windowed_uv[target_corner[..., 1], target_corner[..., 0], :, :, :].reshape(target_height, target_width, 2, filter_size) # (target_height, tgt_width, 2, filter_size)
target_window_mask = windowed_mask[..., target_corner[..., 1], target_corner[..., 0], :, :].reshape(*mask.shape[:-2], target_height, target_width, filter_size) # (..., target_height, tgt_width, filter_size)
target_window_indices = windowed_indices[target_corner[..., 1], target_corner[..., 0], :, :].reshape(target_height, target_width, filter_size) # (target_height, tgt_width, filter_size)
target_window_indices = target_window_indices.expand_as(target_window_mask)
# Compute nearest neighbor in the local window for each pixel
dist = torch.where(target_window_mask, torch.norm(target_window_uv - target_uv[..., None], dim=-2), torch.inf) # (..., target_height, tgt_width, filter_size)
nearest = torch.argmin(dist, dim=-1, keepdim=True) # (..., target_height, tgt_width, 1)
nearest_idx = torch.gather(target_window_indices, index=nearest, dim=-1).squeeze(-1) # (..., target_height, tgt_width)
target_mask = torch.any(target_window_mask, dim=-1)
nearest_i, nearest_j = nearest_idx // width, nearest_idx % width
batch_indices = [torch.arange(n, device=device).reshape([1] * i + [n] + [1] * (mask.dim() - i - 1)) for i, n in enumerate(mask.shape[:-2])]
return (*batch_indices, nearest_i, nearest_j), target_mask
|