import base64 import cv2 import gradio as gr import numpy as np import requests MARKDOWN = """ # HotDogGPT 💬 + 🌭 HotDogGPT is OpenAI Vision API experiment reproducing the famous [Hot Dog, Not Hot Dog](https://www.youtube.com/watch?v=ACmydtFDTGs) app from Silicon Valley.

hotdog

Visit [awesome-openai-vision-api-experiments](https://github.com/roboflow/awesome-openai-vision-api-experiments) repository to find more OpenAI Vision API experiments or contribute your own. """ API_URL = "https://api.openai.com/v1/chat/completions" CLASSES = ["🌭 Hot Dog", "❌ Not Hot Dog"] def preprocess_image(image: np.ndarray) -> np.ndarray: image = np.fliplr(image) return cv2.cvtColor(image, cv2.COLOR_RGB2BGR) def encode_image_to_base64(image: np.ndarray) -> str: success, buffer = cv2.imencode('.jpg', image) if not success: raise ValueError("Could not encode image to JPEG format.") encoded_image = base64.b64encode(buffer).decode('utf-8') return encoded_image def compose_payload(image: np.ndarray, prompt: str) -> dict: base64_image = encode_image_to_base64(image) return { "model": "gpt-4-vision-preview", "messages": [ { "role": "user", "content": [ { "type": "text", "text": prompt }, { "type": "image_url", "image_url": { "url": f"data:image/jpeg;base64,{base64_image}" } } ] } ], "max_tokens": 300 } def compose_classification_prompt(classes: list) -> str: return (f"What is in the image? Return the class of the object in the image. Here " f"are the classes: {', '.join(classes)}. You can only return one class " f"from that list.") def compose_headers(api_key: str) -> dict: return { "Content-Type": "application/json", "Authorization": f"Bearer {api_key}" } def prompt_image(api_key: str, image: np.ndarray, prompt: str) -> str: headers = compose_headers(api_key=api_key) payload = compose_payload(image=image, prompt=prompt) response = requests.post(url=API_URL, headers=headers, json=payload).json() if 'error' in response: raise ValueError(response['error']['message']) return response['choices'][0]['message']['content'] def classify_image(api_key: str, image: np.ndarray) -> str: if not api_key: raise ValueError( "API_KEY is not set. " "Please follow the instructions in the README to set it up.") image = preprocess_image(image=image) prompt = compose_classification_prompt(classes=CLASSES) response = prompt_image(api_key=api_key, image=image, prompt=prompt) return response with gr.Blocks() as demo: gr.Markdown(MARKDOWN) api_key_textbox = gr.Textbox( label="🔑 OpenAI API", type="password") with gr.TabItem("Basic"): with gr.Column(): input_image = gr.Image( image_mode='RGB', type='numpy', height=500) output_text = gr.Textbox( label="Output") submit_button = gr.Button("Submit") submit_button.click( fn=classify_image, inputs=[api_key_textbox, input_image], outputs=output_text) demo.launch(debug=False, show_error=True)