import streamlit as st import sqlite3 import pandas as pd import streamlit as st import pygwalker as pyg import streamlit.components.v1 as components st.set_page_config( page_title="Financial Data", page_icon="📈", layout="wide", initial_sidebar_state="expanded", ) st.title('Financial Data') st.subheader('This is a BI tool to analyze news sentiment data') conn = sqlite3.connect('fin_data.db') c = conn.cursor() c.execute(""" select * from company_news """) rows = c.fetchall() # Extract column names from the cursor column_names = [description[0] for description in c.description] conn.commit() conn.close() # Create a DataFrame df = pd.DataFrame(rows, columns=column_names) # setup pygwalker configuration: https://github.com/Kanaries/pygwalker, https://docs.kanaries.net/pygwalker/use-pygwalker-with-streamlit.en pyg_html = pyg.walk(df, dark = 'dark', return_html=True) components.html(pyg_html, height=1000, scrolling=True)