import copy import platform import random from functools import partial import numpy as np from mmcv.parallel import collate from mmcv.runner import get_dist_info from mmcv.utils import Registry, build_from_cfg from torch.utils.data import DataLoader from .samplers import DistributedGroupSampler, DistributedSampler, GroupSampler if platform.system() != 'Windows': # https://github.com/pytorch/pytorch/issues/973 import resource rlimit = resource.getrlimit(resource.RLIMIT_NOFILE) hard_limit = rlimit[1] soft_limit = min(4096, hard_limit) resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit)) DATASETS = Registry('dataset') PIPELINES = Registry('pipeline') def _concat_dataset(cfg, default_args=None): from .dataset_wrappers import ConcatDataset ann_files = cfg['ann_file'] img_prefixes = cfg.get('img_prefix', None) seg_prefixes = cfg.get('seg_prefix', None) proposal_files = cfg.get('proposal_file', None) separate_eval = cfg.get('separate_eval', True) datasets = [] num_dset = len(ann_files) for i in range(num_dset): data_cfg = copy.deepcopy(cfg) # pop 'separate_eval' since it is not a valid key for common datasets. if 'separate_eval' in data_cfg: data_cfg.pop('separate_eval') data_cfg['ann_file'] = ann_files[i] if isinstance(img_prefixes, (list, tuple)): data_cfg['img_prefix'] = img_prefixes[i] if isinstance(seg_prefixes, (list, tuple)): data_cfg['seg_prefix'] = seg_prefixes[i] if isinstance(proposal_files, (list, tuple)): data_cfg['proposal_file'] = proposal_files[i] datasets.append(build_dataset(data_cfg, default_args)) return ConcatDataset(datasets, separate_eval) def build_dataset(cfg, default_args=None): from .dataset_wrappers import (ConcatDataset, RepeatDataset, ClassBalancedDataset) if isinstance(cfg, (list, tuple)): dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg]) elif cfg['type'] == 'ConcatDataset': dataset = ConcatDataset( [build_dataset(c, default_args) for c in cfg['datasets']], cfg.get('separate_eval', True)) elif cfg['type'] == 'RepeatDataset': dataset = RepeatDataset( build_dataset(cfg['dataset'], default_args), cfg['times']) elif cfg['type'] == 'ClassBalancedDataset': dataset = ClassBalancedDataset( build_dataset(cfg['dataset'], default_args), cfg['oversample_thr']) elif isinstance(cfg.get('ann_file'), (list, tuple)): dataset = _concat_dataset(cfg, default_args) else: dataset = build_from_cfg(cfg, DATASETS, default_args) return dataset def build_dataloader(dataset, samples_per_gpu, workers_per_gpu, num_gpus=1, dist=True, shuffle=True, seed=None, **kwargs): """Build PyTorch DataLoader. In distributed training, each GPU/process has a dataloader. In non-distributed training, there is only one dataloader for all GPUs. Args: dataset (Dataset): A PyTorch dataset. samples_per_gpu (int): Number of training samples on each GPU, i.e., batch size of each GPU. workers_per_gpu (int): How many subprocesses to use for data loading for each GPU. num_gpus (int): Number of GPUs. Only used in non-distributed training. dist (bool): Distributed training/test or not. Default: True. shuffle (bool): Whether to shuffle the data at every epoch. Default: True. kwargs: any keyword argument to be used to initialize DataLoader Returns: DataLoader: A PyTorch dataloader. """ rank, world_size = get_dist_info() if dist: # DistributedGroupSampler will definitely shuffle the data to satisfy # that images on each GPU are in the same group if shuffle: sampler = DistributedGroupSampler( dataset, samples_per_gpu, world_size, rank, seed=seed) else: sampler = DistributedSampler( dataset, world_size, rank, shuffle=False, seed=seed) batch_size = samples_per_gpu num_workers = workers_per_gpu else: sampler = GroupSampler(dataset, samples_per_gpu) if shuffle else None batch_size = num_gpus * samples_per_gpu num_workers = num_gpus * workers_per_gpu init_fn = partial( worker_init_fn, num_workers=num_workers, rank=rank, seed=seed) if seed is not None else None data_loader = DataLoader( dataset, batch_size=batch_size, sampler=sampler, num_workers=num_workers, collate_fn=partial(collate, samples_per_gpu=samples_per_gpu), pin_memory=False, worker_init_fn=init_fn, **kwargs) return data_loader def worker_init_fn(worker_id, num_workers, rank, seed): # The seed of each worker equals to # num_worker * rank + worker_id + user_seed worker_seed = num_workers * rank + worker_id + seed np.random.seed(worker_seed) random.seed(worker_seed)