from collections.abc import Sequence import mmcv import numpy as np import torch from mmcv.parallel import DataContainer as DC from ..builder import PIPELINES def to_tensor(data): """Convert objects of various python types to :obj:`torch.Tensor`. Supported types are: :class:`numpy.ndarray`, :class:`torch.Tensor`, :class:`Sequence`, :class:`int` and :class:`float`. Args: data (torch.Tensor | numpy.ndarray | Sequence | int | float): Data to be converted. """ if isinstance(data, torch.Tensor): return data elif isinstance(data, np.ndarray): return torch.from_numpy(data) elif isinstance(data, Sequence) and not mmcv.is_str(data): return torch.tensor(data) elif isinstance(data, int): return torch.LongTensor([data]) elif isinstance(data, float): return torch.FloatTensor([data]) else: raise TypeError(f'type {type(data)} cannot be converted to tensor.') @PIPELINES.register_module() class ToTensor(object): """Convert some results to :obj:`torch.Tensor` by given keys. Args: keys (Sequence[str]): Keys that need to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert data in results to :obj:`torch.Tensor`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to :obj:`torch.Tensor`. """ for key in self.keys: results[key] = to_tensor(results[key]) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class ImageToTensor(object): """Convert image to :obj:`torch.Tensor` by given keys. The dimension order of input image is (H, W, C). The pipeline will convert it to (C, H, W). If only 2 dimension (H, W) is given, the output would be (1, H, W). Args: keys (Sequence[str]): Key of images to be converted to Tensor. """ def __init__(self, keys): self.keys = keys def __call__(self, results): """Call function to convert image in results to :obj:`torch.Tensor` and transpose the channel order. Args: results (dict): Result dict contains the image data to convert. Returns: dict: The result dict contains the image converted to :obj:`torch.Tensor` and transposed to (C, H, W) order. """ for key in self.keys: img = results[key] if len(img.shape) < 3: img = np.expand_dims(img, -1) results[key] = to_tensor(img.transpose(2, 0, 1)) return results def __repr__(self): return self.__class__.__name__ + f'(keys={self.keys})' @PIPELINES.register_module() class Transpose(object): """Transpose some results by given keys. Args: keys (Sequence[str]): Keys of results to be transposed. order (Sequence[int]): Order of transpose. """ def __init__(self, keys, order): self.keys = keys self.order = order def __call__(self, results): """Call function to transpose the channel order of data in results. Args: results (dict): Result dict contains the data to transpose. Returns: dict: The result dict contains the data transposed to \ ``self.order``. """ for key in self.keys: results[key] = results[key].transpose(self.order) return results def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, order={self.order})' @PIPELINES.register_module() class ToDataContainer(object): """Convert results to :obj:`mmcv.DataContainer` by given fields. Args: fields (Sequence[dict]): Each field is a dict like ``dict(key='xxx', **kwargs)``. The ``key`` in result will be converted to :obj:`mmcv.DataContainer` with ``**kwargs``. Default: ``(dict(key='img', stack=True), dict(key='gt_bboxes'), dict(key='gt_labels'))``. """ def __init__(self, fields=(dict(key='img', stack=True), dict(key='gt_bboxes'), dict(key='gt_labels'))): self.fields = fields def __call__(self, results): """Call function to convert data in results to :obj:`mmcv.DataContainer`. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data converted to \ :obj:`mmcv.DataContainer`. """ for field in self.fields: field = field.copy() key = field.pop('key') results[key] = DC(results[key], **field) return results def __repr__(self): return self.__class__.__name__ + f'(fields={self.fields})' @PIPELINES.register_module() class DefaultFormatBundle(object): """Default formatting bundle. It simplifies the pipeline of formatting common fields, including "img", "proposals", "gt_bboxes", "gt_labels", "gt_masks" and "gt_semantic_seg". These fields are formatted as follows. - img: (1)transpose, (2)to tensor, (3)to DataContainer (stack=True) - proposals: (1)to tensor, (2)to DataContainer - gt_bboxes: (1)to tensor, (2)to DataContainer - gt_bboxes_ignore: (1)to tensor, (2)to DataContainer - gt_labels: (1)to tensor, (2)to DataContainer - gt_masks: (1)to tensor, (2)to DataContainer (cpu_only=True) - gt_semantic_seg: (1)unsqueeze dim-0 (2)to tensor, \ (3)to DataContainer (stack=True) """ def __call__(self, results): """Call function to transform and format common fields in results. Args: results (dict): Result dict contains the data to convert. Returns: dict: The result dict contains the data that is formatted with \ default bundle. """ if 'img' in results: img = results['img'] # add default meta keys results = self._add_default_meta_keys(results) if len(img.shape) < 3: img = np.expand_dims(img, -1) img = np.ascontiguousarray(img.transpose(2, 0, 1)) results['img'] = DC(to_tensor(img), stack=True) for key in ['proposals', 'gt_bboxes', 'gt_bboxes_ignore', 'gt_labels']: if key not in results: continue results[key] = DC(to_tensor(results[key])) if 'gt_masks' in results: results['gt_masks'] = DC(results['gt_masks'], cpu_only=True) if 'gt_semantic_seg' in results: results['gt_semantic_seg'] = DC( to_tensor(results['gt_semantic_seg'][None, ...]), stack=True) return results def _add_default_meta_keys(self, results): """Add default meta keys. We set default meta keys including `pad_shape`, `scale_factor` and `img_norm_cfg` to avoid the case where no `Resize`, `Normalize` and `Pad` are implemented during the whole pipeline. Args: results (dict): Result dict contains the data to convert. Returns: results (dict): Updated result dict contains the data to convert. """ img = results['img'] results.setdefault('pad_shape', img.shape) results.setdefault('scale_factor', 1.0) num_channels = 1 if len(img.shape) < 3 else img.shape[2] results.setdefault( 'img_norm_cfg', dict( mean=np.zeros(num_channels, dtype=np.float32), std=np.ones(num_channels, dtype=np.float32), to_rgb=False)) return results def __repr__(self): return self.__class__.__name__ @PIPELINES.register_module() class Collect(object): """Collect data from the loader relevant to the specific task. This is usually the last stage of the data loader pipeline. Typically keys is set to some subset of "img", "proposals", "gt_bboxes", "gt_bboxes_ignore", "gt_labels", and/or "gt_masks". The "img_meta" item is always populated. The contents of the "img_meta" dictionary depends on "meta_keys". By default this includes: - "img_shape": shape of the image input to the network as a tuple \ (h, w, c). Note that images may be zero padded on the \ bottom/right if the batch tensor is larger than this shape. - "scale_factor": a float indicating the preprocessing scale - "flip": a boolean indicating if image flip transform was used - "filename": path to the image file - "ori_shape": original shape of the image as a tuple (h, w, c) - "pad_shape": image shape after padding - "img_norm_cfg": a dict of normalization information: - mean - per channel mean subtraction - std - per channel std divisor - to_rgb - bool indicating if bgr was converted to rgb Args: keys (Sequence[str]): Keys of results to be collected in ``data``. meta_keys (Sequence[str], optional): Meta keys to be converted to ``mmcv.DataContainer`` and collected in ``data[img_metas]``. Default: ``('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')`` """ def __init__(self, keys, meta_keys=('filename', 'ori_filename', 'ori_shape', 'img_shape', 'pad_shape', 'scale_factor', 'flip', 'flip_direction', 'img_norm_cfg')): self.keys = keys self.meta_keys = meta_keys def __call__(self, results): """Call function to collect keys in results. The keys in ``meta_keys`` will be converted to :obj:mmcv.DataContainer. Args: results (dict): Result dict contains the data to collect. Returns: dict: The result dict contains the following keys - keys in``self.keys`` - ``img_metas`` """ data = {} img_meta = {} for key in self.meta_keys: img_meta[key] = results[key] data['img_metas'] = DC(img_meta, cpu_only=True) for key in self.keys: data[key] = results[key] return data def __repr__(self): return self.__class__.__name__ + \ f'(keys={self.keys}, meta_keys={self.meta_keys})' @PIPELINES.register_module() class WrapFieldsToLists(object): """Wrap fields of the data dictionary into lists for evaluation. This class can be used as a last step of a test or validation pipeline for single image evaluation or inference. Example: >>> test_pipeline = [ >>> dict(type='LoadImageFromFile'), >>> dict(type='Normalize', mean=[123.675, 116.28, 103.53], std=[58.395, 57.12, 57.375], to_rgb=True), >>> dict(type='Pad', size_divisor=32), >>> dict(type='ImageToTensor', keys=['img']), >>> dict(type='Collect', keys=['img']), >>> dict(type='WrapFieldsToLists') >>> ] """ def __call__(self, results): """Call function to wrap fields into lists. Args: results (dict): Result dict contains the data to wrap. Returns: dict: The result dict where value of ``self.keys`` are wrapped \ into list. """ # Wrap dict fields into lists for key, val in results.items(): results[key] = [val] return results def __repr__(self): return f'{self.__class__.__name__}()'