Spaces:
Runtime error
Runtime error
import annotator.uniformer.mmcv as mmcv | |
import numpy as np | |
from annotator.uniformer.mmcv.utils import deprecated_api_warning, is_tuple_of | |
from numpy import random | |
from ..builder import PIPELINES | |
class Resize(object): | |
"""Resize images & seg. | |
This transform resizes the input image to some scale. If the input dict | |
contains the key "scale", then the scale in the input dict is used, | |
otherwise the specified scale in the init method is used. | |
``img_scale`` can be None, a tuple (single-scale) or a list of tuple | |
(multi-scale). There are 4 multiscale modes: | |
- ``ratio_range is not None``: | |
1. When img_scale is None, img_scale is the shape of image in results | |
(img_scale = results['img'].shape[:2]) and the image is resized based | |
on the original size. (mode 1) | |
2. When img_scale is a tuple (single-scale), randomly sample a ratio from | |
the ratio range and multiply it with the image scale. (mode 2) | |
- ``ratio_range is None and multiscale_mode == "range"``: randomly sample a | |
scale from the a range. (mode 3) | |
- ``ratio_range is None and multiscale_mode == "value"``: randomly sample a | |
scale from multiple scales. (mode 4) | |
Args: | |
img_scale (tuple or list[tuple]): Images scales for resizing. | |
multiscale_mode (str): Either "range" or "value". | |
ratio_range (tuple[float]): (min_ratio, max_ratio) | |
keep_ratio (bool): Whether to keep the aspect ratio when resizing the | |
image. | |
""" | |
def __init__(self, | |
img_scale=None, | |
multiscale_mode='range', | |
ratio_range=None, | |
keep_ratio=True): | |
if img_scale is None: | |
self.img_scale = None | |
else: | |
if isinstance(img_scale, list): | |
self.img_scale = img_scale | |
else: | |
self.img_scale = [img_scale] | |
assert mmcv.is_list_of(self.img_scale, tuple) | |
if ratio_range is not None: | |
# mode 1: given img_scale=None and a range of image ratio | |
# mode 2: given a scale and a range of image ratio | |
assert self.img_scale is None or len(self.img_scale) == 1 | |
else: | |
# mode 3 and 4: given multiple scales or a range of scales | |
assert multiscale_mode in ['value', 'range'] | |
self.multiscale_mode = multiscale_mode | |
self.ratio_range = ratio_range | |
self.keep_ratio = keep_ratio | |
def random_select(img_scales): | |
"""Randomly select an img_scale from given candidates. | |
Args: | |
img_scales (list[tuple]): Images scales for selection. | |
Returns: | |
(tuple, int): Returns a tuple ``(img_scale, scale_dix)``, | |
where ``img_scale`` is the selected image scale and | |
``scale_idx`` is the selected index in the given candidates. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) | |
scale_idx = np.random.randint(len(img_scales)) | |
img_scale = img_scales[scale_idx] | |
return img_scale, scale_idx | |
def random_sample(img_scales): | |
"""Randomly sample an img_scale when ``multiscale_mode=='range'``. | |
Args: | |
img_scales (list[tuple]): Images scale range for sampling. | |
There must be two tuples in img_scales, which specify the lower | |
and upper bound of image scales. | |
Returns: | |
(tuple, None): Returns a tuple ``(img_scale, None)``, where | |
``img_scale`` is sampled scale and None is just a placeholder | |
to be consistent with :func:`random_select`. | |
""" | |
assert mmcv.is_list_of(img_scales, tuple) and len(img_scales) == 2 | |
img_scale_long = [max(s) for s in img_scales] | |
img_scale_short = [min(s) for s in img_scales] | |
long_edge = np.random.randint( | |
min(img_scale_long), | |
max(img_scale_long) + 1) | |
short_edge = np.random.randint( | |
min(img_scale_short), | |
max(img_scale_short) + 1) | |
img_scale = (long_edge, short_edge) | |
return img_scale, None | |
def random_sample_ratio(img_scale, ratio_range): | |
"""Randomly sample an img_scale when ``ratio_range`` is specified. | |
A ratio will be randomly sampled from the range specified by | |
``ratio_range``. Then it would be multiplied with ``img_scale`` to | |
generate sampled scale. | |
Args: | |
img_scale (tuple): Images scale base to multiply with ratio. | |
ratio_range (tuple[float]): The minimum and maximum ratio to scale | |
the ``img_scale``. | |
Returns: | |
(tuple, None): Returns a tuple ``(scale, None)``, where | |
``scale`` is sampled ratio multiplied with ``img_scale`` and | |
None is just a placeholder to be consistent with | |
:func:`random_select`. | |
""" | |
assert isinstance(img_scale, tuple) and len(img_scale) == 2 | |
min_ratio, max_ratio = ratio_range | |
assert min_ratio <= max_ratio | |
ratio = np.random.random_sample() * (max_ratio - min_ratio) + min_ratio | |
scale = int(img_scale[0] * ratio), int(img_scale[1] * ratio) | |
return scale, None | |
def _random_scale(self, results): | |
"""Randomly sample an img_scale according to ``ratio_range`` and | |
``multiscale_mode``. | |
If ``ratio_range`` is specified, a ratio will be sampled and be | |
multiplied with ``img_scale``. | |
If multiple scales are specified by ``img_scale``, a scale will be | |
sampled according to ``multiscale_mode``. | |
Otherwise, single scale will be used. | |
Args: | |
results (dict): Result dict from :obj:`dataset`. | |
Returns: | |
dict: Two new keys 'scale` and 'scale_idx` are added into | |
``results``, which would be used by subsequent pipelines. | |
""" | |
if self.ratio_range is not None: | |
if self.img_scale is None: | |
h, w = results['img'].shape[:2] | |
scale, scale_idx = self.random_sample_ratio((w, h), | |
self.ratio_range) | |
else: | |
scale, scale_idx = self.random_sample_ratio( | |
self.img_scale[0], self.ratio_range) | |
elif len(self.img_scale) == 1: | |
scale, scale_idx = self.img_scale[0], 0 | |
elif self.multiscale_mode == 'range': | |
scale, scale_idx = self.random_sample(self.img_scale) | |
elif self.multiscale_mode == 'value': | |
scale, scale_idx = self.random_select(self.img_scale) | |
else: | |
raise NotImplementedError | |
results['scale'] = scale | |
results['scale_idx'] = scale_idx | |
def _resize_img(self, results): | |
"""Resize images with ``results['scale']``.""" | |
if self.keep_ratio: | |
img, scale_factor = mmcv.imrescale( | |
results['img'], results['scale'], return_scale=True) | |
# the w_scale and h_scale has minor difference | |
# a real fix should be done in the mmcv.imrescale in the future | |
new_h, new_w = img.shape[:2] | |
h, w = results['img'].shape[:2] | |
w_scale = new_w / w | |
h_scale = new_h / h | |
else: | |
img, w_scale, h_scale = mmcv.imresize( | |
results['img'], results['scale'], return_scale=True) | |
scale_factor = np.array([w_scale, h_scale, w_scale, h_scale], | |
dtype=np.float32) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
results['pad_shape'] = img.shape # in case that there is no padding | |
results['scale_factor'] = scale_factor | |
results['keep_ratio'] = self.keep_ratio | |
def _resize_seg(self, results): | |
"""Resize semantic segmentation map with ``results['scale']``.""" | |
for key in results.get('seg_fields', []): | |
if self.keep_ratio: | |
gt_seg = mmcv.imrescale( | |
results[key], results['scale'], interpolation='nearest') | |
else: | |
gt_seg = mmcv.imresize( | |
results[key], results['scale'], interpolation='nearest') | |
results[key] = gt_seg | |
def __call__(self, results): | |
"""Call function to resize images, bounding boxes, masks, semantic | |
segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Resized results, 'img_shape', 'pad_shape', 'scale_factor', | |
'keep_ratio' keys are added into result dict. | |
""" | |
if 'scale' not in results: | |
self._random_scale(results) | |
self._resize_img(results) | |
self._resize_seg(results) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += (f'(img_scale={self.img_scale}, ' | |
f'multiscale_mode={self.multiscale_mode}, ' | |
f'ratio_range={self.ratio_range}, ' | |
f'keep_ratio={self.keep_ratio})') | |
return repr_str | |
class RandomFlip(object): | |
"""Flip the image & seg. | |
If the input dict contains the key "flip", then the flag will be used, | |
otherwise it will be randomly decided by a ratio specified in the init | |
method. | |
Args: | |
prob (float, optional): The flipping probability. Default: None. | |
direction(str, optional): The flipping direction. Options are | |
'horizontal' and 'vertical'. Default: 'horizontal'. | |
""" | |
def __init__(self, prob=None, direction='horizontal'): | |
self.prob = prob | |
self.direction = direction | |
if prob is not None: | |
assert prob >= 0 and prob <= 1 | |
assert direction in ['horizontal', 'vertical'] | |
def __call__(self, results): | |
"""Call function to flip bounding boxes, masks, semantic segmentation | |
maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Flipped results, 'flip', 'flip_direction' keys are added into | |
result dict. | |
""" | |
if 'flip' not in results: | |
flip = True if np.random.rand() < self.prob else False | |
results['flip'] = flip | |
if 'flip_direction' not in results: | |
results['flip_direction'] = self.direction | |
if results['flip']: | |
# flip image | |
results['img'] = mmcv.imflip( | |
results['img'], direction=results['flip_direction']) | |
# flip segs | |
for key in results.get('seg_fields', []): | |
# use copy() to make numpy stride positive | |
results[key] = mmcv.imflip( | |
results[key], direction=results['flip_direction']).copy() | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(prob={self.prob})' | |
class Pad(object): | |
"""Pad the image & mask. | |
There are two padding modes: (1) pad to a fixed size and (2) pad to the | |
minimum size that is divisible by some number. | |
Added keys are "pad_shape", "pad_fixed_size", "pad_size_divisor", | |
Args: | |
size (tuple, optional): Fixed padding size. | |
size_divisor (int, optional): The divisor of padded size. | |
pad_val (float, optional): Padding value. Default: 0. | |
seg_pad_val (float, optional): Padding value of segmentation map. | |
Default: 255. | |
""" | |
def __init__(self, | |
size=None, | |
size_divisor=None, | |
pad_val=0, | |
seg_pad_val=255): | |
self.size = size | |
self.size_divisor = size_divisor | |
self.pad_val = pad_val | |
self.seg_pad_val = seg_pad_val | |
# only one of size and size_divisor should be valid | |
assert size is not None or size_divisor is not None | |
assert size is None or size_divisor is None | |
def _pad_img(self, results): | |
"""Pad images according to ``self.size``.""" | |
if self.size is not None: | |
padded_img = mmcv.impad( | |
results['img'], shape=self.size, pad_val=self.pad_val) | |
elif self.size_divisor is not None: | |
padded_img = mmcv.impad_to_multiple( | |
results['img'], self.size_divisor, pad_val=self.pad_val) | |
results['img'] = padded_img | |
results['pad_shape'] = padded_img.shape | |
results['pad_fixed_size'] = self.size | |
results['pad_size_divisor'] = self.size_divisor | |
def _pad_seg(self, results): | |
"""Pad masks according to ``results['pad_shape']``.""" | |
for key in results.get('seg_fields', []): | |
results[key] = mmcv.impad( | |
results[key], | |
shape=results['pad_shape'][:2], | |
pad_val=self.seg_pad_val) | |
def __call__(self, results): | |
"""Call function to pad images, masks, semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Updated result dict. | |
""" | |
self._pad_img(results) | |
self._pad_seg(results) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(size={self.size}, size_divisor={self.size_divisor}, ' \ | |
f'pad_val={self.pad_val})' | |
return repr_str | |
class Normalize(object): | |
"""Normalize the image. | |
Added key is "img_norm_cfg". | |
Args: | |
mean (sequence): Mean values of 3 channels. | |
std (sequence): Std values of 3 channels. | |
to_rgb (bool): Whether to convert the image from BGR to RGB, | |
default is true. | |
""" | |
def __init__(self, mean, std, to_rgb=True): | |
self.mean = np.array(mean, dtype=np.float32) | |
self.std = np.array(std, dtype=np.float32) | |
self.to_rgb = to_rgb | |
def __call__(self, results): | |
"""Call function to normalize images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Normalized results, 'img_norm_cfg' key is added into | |
result dict. | |
""" | |
results['img'] = mmcv.imnormalize(results['img'], self.mean, self.std, | |
self.to_rgb) | |
results['img_norm_cfg'] = dict( | |
mean=self.mean, std=self.std, to_rgb=self.to_rgb) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(mean={self.mean}, std={self.std}, to_rgb=' \ | |
f'{self.to_rgb})' | |
return repr_str | |
class Rerange(object): | |
"""Rerange the image pixel value. | |
Args: | |
min_value (float or int): Minimum value of the reranged image. | |
Default: 0. | |
max_value (float or int): Maximum value of the reranged image. | |
Default: 255. | |
""" | |
def __init__(self, min_value=0, max_value=255): | |
assert isinstance(min_value, float) or isinstance(min_value, int) | |
assert isinstance(max_value, float) or isinstance(max_value, int) | |
assert min_value < max_value | |
self.min_value = min_value | |
self.max_value = max_value | |
def __call__(self, results): | |
"""Call function to rerange images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Reranged results. | |
""" | |
img = results['img'] | |
img_min_value = np.min(img) | |
img_max_value = np.max(img) | |
assert img_min_value < img_max_value | |
# rerange to [0, 1] | |
img = (img - img_min_value) / (img_max_value - img_min_value) | |
# rerange to [min_value, max_value] | |
img = img * (self.max_value - self.min_value) + self.min_value | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(min_value={self.min_value}, max_value={self.max_value})' | |
return repr_str | |
class CLAHE(object): | |
"""Use CLAHE method to process the image. | |
See `ZUIDERVELD,K. Contrast Limited Adaptive Histogram Equalization[J]. | |
Graphics Gems, 1994:474-485.` for more information. | |
Args: | |
clip_limit (float): Threshold for contrast limiting. Default: 40.0. | |
tile_grid_size (tuple[int]): Size of grid for histogram equalization. | |
Input image will be divided into equally sized rectangular tiles. | |
It defines the number of tiles in row and column. Default: (8, 8). | |
""" | |
def __init__(self, clip_limit=40.0, tile_grid_size=(8, 8)): | |
assert isinstance(clip_limit, (float, int)) | |
self.clip_limit = clip_limit | |
assert is_tuple_of(tile_grid_size, int) | |
assert len(tile_grid_size) == 2 | |
self.tile_grid_size = tile_grid_size | |
def __call__(self, results): | |
"""Call function to Use CLAHE method process images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Processed results. | |
""" | |
for i in range(results['img'].shape[2]): | |
results['img'][:, :, i] = mmcv.clahe( | |
np.array(results['img'][:, :, i], dtype=np.uint8), | |
self.clip_limit, self.tile_grid_size) | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(clip_limit={self.clip_limit}, '\ | |
f'tile_grid_size={self.tile_grid_size})' | |
return repr_str | |
class RandomCrop(object): | |
"""Random crop the image & seg. | |
Args: | |
crop_size (tuple): Expected size after cropping, (h, w). | |
cat_max_ratio (float): The maximum ratio that single category could | |
occupy. | |
""" | |
def __init__(self, crop_size, cat_max_ratio=1., ignore_index=255): | |
assert crop_size[0] > 0 and crop_size[1] > 0 | |
self.crop_size = crop_size | |
self.cat_max_ratio = cat_max_ratio | |
self.ignore_index = ignore_index | |
def get_crop_bbox(self, img): | |
"""Randomly get a crop bounding box.""" | |
margin_h = max(img.shape[0] - self.crop_size[0], 0) | |
margin_w = max(img.shape[1] - self.crop_size[1], 0) | |
offset_h = np.random.randint(0, margin_h + 1) | |
offset_w = np.random.randint(0, margin_w + 1) | |
crop_y1, crop_y2 = offset_h, offset_h + self.crop_size[0] | |
crop_x1, crop_x2 = offset_w, offset_w + self.crop_size[1] | |
return crop_y1, crop_y2, crop_x1, crop_x2 | |
def crop(self, img, crop_bbox): | |
"""Crop from ``img``""" | |
crop_y1, crop_y2, crop_x1, crop_x2 = crop_bbox | |
img = img[crop_y1:crop_y2, crop_x1:crop_x2, ...] | |
return img | |
def __call__(self, results): | |
"""Call function to randomly crop images, semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Randomly cropped results, 'img_shape' key in result dict is | |
updated according to crop size. | |
""" | |
img = results['img'] | |
crop_bbox = self.get_crop_bbox(img) | |
if self.cat_max_ratio < 1.: | |
# Repeat 10 times | |
for _ in range(10): | |
seg_temp = self.crop(results['gt_semantic_seg'], crop_bbox) | |
labels, cnt = np.unique(seg_temp, return_counts=True) | |
cnt = cnt[labels != self.ignore_index] | |
if len(cnt) > 1 and np.max(cnt) / np.sum( | |
cnt) < self.cat_max_ratio: | |
break | |
crop_bbox = self.get_crop_bbox(img) | |
# crop the image | |
img = self.crop(img, crop_bbox) | |
img_shape = img.shape | |
results['img'] = img | |
results['img_shape'] = img_shape | |
# crop semantic seg | |
for key in results.get('seg_fields', []): | |
results[key] = self.crop(results[key], crop_bbox) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(crop_size={self.crop_size})' | |
class RandomRotate(object): | |
"""Rotate the image & seg. | |
Args: | |
prob (float): The rotation probability. | |
degree (float, tuple[float]): Range of degrees to select from. If | |
degree is a number instead of tuple like (min, max), | |
the range of degree will be (``-degree``, ``+degree``) | |
pad_val (float, optional): Padding value of image. Default: 0. | |
seg_pad_val (float, optional): Padding value of segmentation map. | |
Default: 255. | |
center (tuple[float], optional): Center point (w, h) of the rotation in | |
the source image. If not specified, the center of the image will be | |
used. Default: None. | |
auto_bound (bool): Whether to adjust the image size to cover the whole | |
rotated image. Default: False | |
""" | |
def __init__(self, | |
prob, | |
degree, | |
pad_val=0, | |
seg_pad_val=255, | |
center=None, | |
auto_bound=False): | |
self.prob = prob | |
assert prob >= 0 and prob <= 1 | |
if isinstance(degree, (float, int)): | |
assert degree > 0, f'degree {degree} should be positive' | |
self.degree = (-degree, degree) | |
else: | |
self.degree = degree | |
assert len(self.degree) == 2, f'degree {self.degree} should be a ' \ | |
f'tuple of (min, max)' | |
self.pal_val = pad_val | |
self.seg_pad_val = seg_pad_val | |
self.center = center | |
self.auto_bound = auto_bound | |
def __call__(self, results): | |
"""Call function to rotate image, semantic segmentation maps. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Rotated results. | |
""" | |
rotate = True if np.random.rand() < self.prob else False | |
degree = np.random.uniform(min(*self.degree), max(*self.degree)) | |
if rotate: | |
# rotate image | |
results['img'] = mmcv.imrotate( | |
results['img'], | |
angle=degree, | |
border_value=self.pal_val, | |
center=self.center, | |
auto_bound=self.auto_bound) | |
# rotate segs | |
for key in results.get('seg_fields', []): | |
results[key] = mmcv.imrotate( | |
results[key], | |
angle=degree, | |
border_value=self.seg_pad_val, | |
center=self.center, | |
auto_bound=self.auto_bound, | |
interpolation='nearest') | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(prob={self.prob}, ' \ | |
f'degree={self.degree}, ' \ | |
f'pad_val={self.pal_val}, ' \ | |
f'seg_pad_val={self.seg_pad_val}, ' \ | |
f'center={self.center}, ' \ | |
f'auto_bound={self.auto_bound})' | |
return repr_str | |
class RGB2Gray(object): | |
"""Convert RGB image to grayscale image. | |
This transform calculate the weighted mean of input image channels with | |
``weights`` and then expand the channels to ``out_channels``. When | |
``out_channels`` is None, the number of output channels is the same as | |
input channels. | |
Args: | |
out_channels (int): Expected number of output channels after | |
transforming. Default: None. | |
weights (tuple[float]): The weights to calculate the weighted mean. | |
Default: (0.299, 0.587, 0.114). | |
""" | |
def __init__(self, out_channels=None, weights=(0.299, 0.587, 0.114)): | |
assert out_channels is None or out_channels > 0 | |
self.out_channels = out_channels | |
assert isinstance(weights, tuple) | |
for item in weights: | |
assert isinstance(item, (float, int)) | |
self.weights = weights | |
def __call__(self, results): | |
"""Call function to convert RGB image to grayscale image. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with grayscale image. | |
""" | |
img = results['img'] | |
assert len(img.shape) == 3 | |
assert img.shape[2] == len(self.weights) | |
weights = np.array(self.weights).reshape((1, 1, -1)) | |
img = (img * weights).sum(2, keepdims=True) | |
if self.out_channels is None: | |
img = img.repeat(weights.shape[2], axis=2) | |
else: | |
img = img.repeat(self.out_channels, axis=2) | |
results['img'] = img | |
results['img_shape'] = img.shape | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += f'(out_channels={self.out_channels}, ' \ | |
f'weights={self.weights})' | |
return repr_str | |
class AdjustGamma(object): | |
"""Using gamma correction to process the image. | |
Args: | |
gamma (float or int): Gamma value used in gamma correction. | |
Default: 1.0. | |
""" | |
def __init__(self, gamma=1.0): | |
assert isinstance(gamma, float) or isinstance(gamma, int) | |
assert gamma > 0 | |
self.gamma = gamma | |
inv_gamma = 1.0 / gamma | |
self.table = np.array([(i / 255.0)**inv_gamma * 255 | |
for i in np.arange(256)]).astype('uint8') | |
def __call__(self, results): | |
"""Call function to process the image with gamma correction. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Processed results. | |
""" | |
results['img'] = mmcv.lut_transform( | |
np.array(results['img'], dtype=np.uint8), self.table) | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(gamma={self.gamma})' | |
class SegRescale(object): | |
"""Rescale semantic segmentation maps. | |
Args: | |
scale_factor (float): The scale factor of the final output. | |
""" | |
def __init__(self, scale_factor=1): | |
self.scale_factor = scale_factor | |
def __call__(self, results): | |
"""Call function to scale the semantic segmentation map. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with semantic segmentation map scaled. | |
""" | |
for key in results.get('seg_fields', []): | |
if self.scale_factor != 1: | |
results[key] = mmcv.imrescale( | |
results[key], self.scale_factor, interpolation='nearest') | |
return results | |
def __repr__(self): | |
return self.__class__.__name__ + f'(scale_factor={self.scale_factor})' | |
class PhotoMetricDistortion(object): | |
"""Apply photometric distortion to image sequentially, every transformation | |
is applied with a probability of 0.5. The position of random contrast is in | |
second or second to last. | |
1. random brightness | |
2. random contrast (mode 0) | |
3. convert color from BGR to HSV | |
4. random saturation | |
5. random hue | |
6. convert color from HSV to BGR | |
7. random contrast (mode 1) | |
Args: | |
brightness_delta (int): delta of brightness. | |
contrast_range (tuple): range of contrast. | |
saturation_range (tuple): range of saturation. | |
hue_delta (int): delta of hue. | |
""" | |
def __init__(self, | |
brightness_delta=32, | |
contrast_range=(0.5, 1.5), | |
saturation_range=(0.5, 1.5), | |
hue_delta=18): | |
self.brightness_delta = brightness_delta | |
self.contrast_lower, self.contrast_upper = contrast_range | |
self.saturation_lower, self.saturation_upper = saturation_range | |
self.hue_delta = hue_delta | |
def convert(self, img, alpha=1, beta=0): | |
"""Multiple with alpha and add beat with clip.""" | |
img = img.astype(np.float32) * alpha + beta | |
img = np.clip(img, 0, 255) | |
return img.astype(np.uint8) | |
def brightness(self, img): | |
"""Brightness distortion.""" | |
if random.randint(2): | |
return self.convert( | |
img, | |
beta=random.uniform(-self.brightness_delta, | |
self.brightness_delta)) | |
return img | |
def contrast(self, img): | |
"""Contrast distortion.""" | |
if random.randint(2): | |
return self.convert( | |
img, | |
alpha=random.uniform(self.contrast_lower, self.contrast_upper)) | |
return img | |
def saturation(self, img): | |
"""Saturation distortion.""" | |
if random.randint(2): | |
img = mmcv.bgr2hsv(img) | |
img[:, :, 1] = self.convert( | |
img[:, :, 1], | |
alpha=random.uniform(self.saturation_lower, | |
self.saturation_upper)) | |
img = mmcv.hsv2bgr(img) | |
return img | |
def hue(self, img): | |
"""Hue distortion.""" | |
if random.randint(2): | |
img = mmcv.bgr2hsv(img) | |
img[:, :, | |
0] = (img[:, :, 0].astype(int) + | |
random.randint(-self.hue_delta, self.hue_delta)) % 180 | |
img = mmcv.hsv2bgr(img) | |
return img | |
def __call__(self, results): | |
"""Call function to perform photometric distortion on images. | |
Args: | |
results (dict): Result dict from loading pipeline. | |
Returns: | |
dict: Result dict with images distorted. | |
""" | |
img = results['img'] | |
# random brightness | |
img = self.brightness(img) | |
# mode == 0 --> do random contrast first | |
# mode == 1 --> do random contrast last | |
mode = random.randint(2) | |
if mode == 1: | |
img = self.contrast(img) | |
# random saturation | |
img = self.saturation(img) | |
# random hue | |
img = self.hue(img) | |
# random contrast | |
if mode == 0: | |
img = self.contrast(img) | |
results['img'] = img | |
return results | |
def __repr__(self): | |
repr_str = self.__class__.__name__ | |
repr_str += (f'(brightness_delta={self.brightness_delta}, ' | |
f'contrast_range=({self.contrast_lower}, ' | |
f'{self.contrast_upper}), ' | |
f'saturation_range=({self.saturation_lower}, ' | |
f'{self.saturation_upper}), ' | |
f'hue_delta={self.hue_delta})') | |
return repr_str | |