Robert001's picture
first commit
b334e29
raw
history blame
5.95 kB
import copy
import platform
import random
from functools import partial
import numpy as np
from annotator.uniformer.mmcv.parallel import collate
from annotator.uniformer.mmcv.runner import get_dist_info
from annotator.uniformer.mmcv.utils import Registry, build_from_cfg
from annotator.uniformer.mmcv.utils.parrots_wrapper import DataLoader, PoolDataLoader
from torch.utils.data import DistributedSampler
if platform.system() != 'Windows':
# https://github.com/pytorch/pytorch/issues/973
import resource
rlimit = resource.getrlimit(resource.RLIMIT_NOFILE)
hard_limit = rlimit[1]
soft_limit = min(4096, hard_limit)
resource.setrlimit(resource.RLIMIT_NOFILE, (soft_limit, hard_limit))
DATASETS = Registry('dataset')
PIPELINES = Registry('pipeline')
def _concat_dataset(cfg, default_args=None):
"""Build :obj:`ConcatDataset by."""
from .dataset_wrappers import ConcatDataset
img_dir = cfg['img_dir']
ann_dir = cfg.get('ann_dir', None)
split = cfg.get('split', None)
num_img_dir = len(img_dir) if isinstance(img_dir, (list, tuple)) else 1
if ann_dir is not None:
num_ann_dir = len(ann_dir) if isinstance(ann_dir, (list, tuple)) else 1
else:
num_ann_dir = 0
if split is not None:
num_split = len(split) if isinstance(split, (list, tuple)) else 1
else:
num_split = 0
if num_img_dir > 1:
assert num_img_dir == num_ann_dir or num_ann_dir == 0
assert num_img_dir == num_split or num_split == 0
else:
assert num_split == num_ann_dir or num_ann_dir <= 1
num_dset = max(num_split, num_img_dir)
datasets = []
for i in range(num_dset):
data_cfg = copy.deepcopy(cfg)
if isinstance(img_dir, (list, tuple)):
data_cfg['img_dir'] = img_dir[i]
if isinstance(ann_dir, (list, tuple)):
data_cfg['ann_dir'] = ann_dir[i]
if isinstance(split, (list, tuple)):
data_cfg['split'] = split[i]
datasets.append(build_dataset(data_cfg, default_args))
return ConcatDataset(datasets)
def build_dataset(cfg, default_args=None):
"""Build datasets."""
from .dataset_wrappers import ConcatDataset, RepeatDataset
if isinstance(cfg, (list, tuple)):
dataset = ConcatDataset([build_dataset(c, default_args) for c in cfg])
elif cfg['type'] == 'RepeatDataset':
dataset = RepeatDataset(
build_dataset(cfg['dataset'], default_args), cfg['times'])
elif isinstance(cfg.get('img_dir'), (list, tuple)) or isinstance(
cfg.get('split', None), (list, tuple)):
dataset = _concat_dataset(cfg, default_args)
else:
dataset = build_from_cfg(cfg, DATASETS, default_args)
return dataset
def build_dataloader(dataset,
samples_per_gpu,
workers_per_gpu,
num_gpus=1,
dist=True,
shuffle=True,
seed=None,
drop_last=False,
pin_memory=True,
dataloader_type='PoolDataLoader',
**kwargs):
"""Build PyTorch DataLoader.
In distributed training, each GPU/process has a dataloader.
In non-distributed training, there is only one dataloader for all GPUs.
Args:
dataset (Dataset): A PyTorch dataset.
samples_per_gpu (int): Number of training samples on each GPU, i.e.,
batch size of each GPU.
workers_per_gpu (int): How many subprocesses to use for data loading
for each GPU.
num_gpus (int): Number of GPUs. Only used in non-distributed training.
dist (bool): Distributed training/test or not. Default: True.
shuffle (bool): Whether to shuffle the data at every epoch.
Default: True.
seed (int | None): Seed to be used. Default: None.
drop_last (bool): Whether to drop the last incomplete batch in epoch.
Default: False
pin_memory (bool): Whether to use pin_memory in DataLoader.
Default: True
dataloader_type (str): Type of dataloader. Default: 'PoolDataLoader'
kwargs: any keyword argument to be used to initialize DataLoader
Returns:
DataLoader: A PyTorch dataloader.
"""
rank, world_size = get_dist_info()
if dist:
sampler = DistributedSampler(
dataset, world_size, rank, shuffle=shuffle)
shuffle = False
batch_size = samples_per_gpu
num_workers = workers_per_gpu
else:
sampler = None
batch_size = num_gpus * samples_per_gpu
num_workers = num_gpus * workers_per_gpu
init_fn = partial(
worker_init_fn, num_workers=num_workers, rank=rank,
seed=seed) if seed is not None else None
assert dataloader_type in (
'DataLoader',
'PoolDataLoader'), f'unsupported dataloader {dataloader_type}'
if dataloader_type == 'PoolDataLoader':
dataloader = PoolDataLoader
elif dataloader_type == 'DataLoader':
dataloader = DataLoader
data_loader = dataloader(
dataset,
batch_size=batch_size,
sampler=sampler,
num_workers=num_workers,
collate_fn=partial(collate, samples_per_gpu=samples_per_gpu),
pin_memory=pin_memory,
shuffle=shuffle,
worker_init_fn=init_fn,
drop_last=drop_last,
**kwargs)
return data_loader
def worker_init_fn(worker_id, num_workers, rank, seed):
"""Worker init func for dataloader.
The seed of each worker equals to num_worker * rank + worker_id + user_seed
Args:
worker_id (int): Worker id.
num_workers (int): Number of workers.
rank (int): The rank of current process.
seed (int): The random seed to use.
"""
worker_seed = num_workers * rank + worker_id + seed
np.random.seed(worker_seed)
random.seed(worker_seed)