Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import inspect | |
import torch.nn as nn | |
from annotator.uniformer.mmcv.utils import is_tuple_of | |
from annotator.uniformer.mmcv.utils.parrots_wrapper import SyncBatchNorm, _BatchNorm, _InstanceNorm | |
from .registry import NORM_LAYERS | |
NORM_LAYERS.register_module('BN', module=nn.BatchNorm2d) | |
NORM_LAYERS.register_module('BN1d', module=nn.BatchNorm1d) | |
NORM_LAYERS.register_module('BN2d', module=nn.BatchNorm2d) | |
NORM_LAYERS.register_module('BN3d', module=nn.BatchNorm3d) | |
NORM_LAYERS.register_module('SyncBN', module=SyncBatchNorm) | |
NORM_LAYERS.register_module('GN', module=nn.GroupNorm) | |
NORM_LAYERS.register_module('LN', module=nn.LayerNorm) | |
NORM_LAYERS.register_module('IN', module=nn.InstanceNorm2d) | |
NORM_LAYERS.register_module('IN1d', module=nn.InstanceNorm1d) | |
NORM_LAYERS.register_module('IN2d', module=nn.InstanceNorm2d) | |
NORM_LAYERS.register_module('IN3d', module=nn.InstanceNorm3d) | |
def infer_abbr(class_type): | |
"""Infer abbreviation from the class name. | |
When we build a norm layer with `build_norm_layer()`, we want to preserve | |
the norm type in variable names, e.g, self.bn1, self.gn. This method will | |
infer the abbreviation to map class types to abbreviations. | |
Rule 1: If the class has the property "_abbr_", return the property. | |
Rule 2: If the parent class is _BatchNorm, GroupNorm, LayerNorm or | |
InstanceNorm, the abbreviation of this layer will be "bn", "gn", "ln" and | |
"in" respectively. | |
Rule 3: If the class name contains "batch", "group", "layer" or "instance", | |
the abbreviation of this layer will be "bn", "gn", "ln" and "in" | |
respectively. | |
Rule 4: Otherwise, the abbreviation falls back to "norm". | |
Args: | |
class_type (type): The norm layer type. | |
Returns: | |
str: The inferred abbreviation. | |
""" | |
if not inspect.isclass(class_type): | |
raise TypeError( | |
f'class_type must be a type, but got {type(class_type)}') | |
if hasattr(class_type, '_abbr_'): | |
return class_type._abbr_ | |
if issubclass(class_type, _InstanceNorm): # IN is a subclass of BN | |
return 'in' | |
elif issubclass(class_type, _BatchNorm): | |
return 'bn' | |
elif issubclass(class_type, nn.GroupNorm): | |
return 'gn' | |
elif issubclass(class_type, nn.LayerNorm): | |
return 'ln' | |
else: | |
class_name = class_type.__name__.lower() | |
if 'batch' in class_name: | |
return 'bn' | |
elif 'group' in class_name: | |
return 'gn' | |
elif 'layer' in class_name: | |
return 'ln' | |
elif 'instance' in class_name: | |
return 'in' | |
else: | |
return 'norm_layer' | |
def build_norm_layer(cfg, num_features, postfix=''): | |
"""Build normalization layer. | |
Args: | |
cfg (dict): The norm layer config, which should contain: | |
- type (str): Layer type. | |
- layer args: Args needed to instantiate a norm layer. | |
- requires_grad (bool, optional): Whether stop gradient updates. | |
num_features (int): Number of input channels. | |
postfix (int | str): The postfix to be appended into norm abbreviation | |
to create named layer. | |
Returns: | |
(str, nn.Module): The first element is the layer name consisting of | |
abbreviation and postfix, e.g., bn1, gn. The second element is the | |
created norm layer. | |
""" | |
if not isinstance(cfg, dict): | |
raise TypeError('cfg must be a dict') | |
if 'type' not in cfg: | |
raise KeyError('the cfg dict must contain the key "type"') | |
cfg_ = cfg.copy() | |
layer_type = cfg_.pop('type') | |
if layer_type not in NORM_LAYERS: | |
raise KeyError(f'Unrecognized norm type {layer_type}') | |
norm_layer = NORM_LAYERS.get(layer_type) | |
abbr = infer_abbr(norm_layer) | |
assert isinstance(postfix, (int, str)) | |
name = abbr + str(postfix) | |
requires_grad = cfg_.pop('requires_grad', True) | |
cfg_.setdefault('eps', 1e-5) | |
if layer_type != 'GN': | |
layer = norm_layer(num_features, **cfg_) | |
if layer_type == 'SyncBN' and hasattr(layer, '_specify_ddp_gpu_num'): | |
layer._specify_ddp_gpu_num(1) | |
else: | |
assert 'num_groups' in cfg_ | |
layer = norm_layer(num_channels=num_features, **cfg_) | |
for param in layer.parameters(): | |
param.requires_grad = requires_grad | |
return name, layer | |
def is_norm(layer, exclude=None): | |
"""Check if a layer is a normalization layer. | |
Args: | |
layer (nn.Module): The layer to be checked. | |
exclude (type | tuple[type]): Types to be excluded. | |
Returns: | |
bool: Whether the layer is a norm layer. | |
""" | |
if exclude is not None: | |
if not isinstance(exclude, tuple): | |
exclude = (exclude, ) | |
if not is_tuple_of(exclude, type): | |
raise TypeError( | |
f'"exclude" must be either None or type or a tuple of types, ' | |
f'but got {type(exclude)}: {exclude}') | |
if exclude and isinstance(layer, exclude): | |
return False | |
all_norm_bases = (_BatchNorm, _InstanceNorm, nn.GroupNorm, nn.LayerNorm) | |
return isinstance(layer, all_norm_bases) | |