Spaces:
Runtime error
Runtime error
import os.path as osp | |
import warnings | |
from collections import OrderedDict | |
import mmcv | |
import numpy as np | |
from mmcv.utils import print_log | |
from torch.utils.data import Dataset | |
from mmdet.core import eval_map, eval_recalls | |
from .builder import DATASETS | |
from .pipelines import Compose | |
class CustomDataset(Dataset): | |
"""Custom dataset for detection. | |
The annotation format is shown as follows. The `ann` field is optional for | |
testing. | |
.. code-block:: none | |
[ | |
{ | |
'filename': 'a.jpg', | |
'width': 1280, | |
'height': 720, | |
'ann': { | |
'bboxes': <np.ndarray> (n, 4) in (x1, y1, x2, y2) order. | |
'labels': <np.ndarray> (n, ), | |
'bboxes_ignore': <np.ndarray> (k, 4), (optional field) | |
'labels_ignore': <np.ndarray> (k, 4) (optional field) | |
} | |
}, | |
... | |
] | |
Args: | |
ann_file (str): Annotation file path. | |
pipeline (list[dict]): Processing pipeline. | |
classes (str | Sequence[str], optional): Specify classes to load. | |
If is None, ``cls.CLASSES`` will be used. Default: None. | |
data_root (str, optional): Data root for ``ann_file``, | |
``img_prefix``, ``seg_prefix``, ``proposal_file`` if specified. | |
test_mode (bool, optional): If set True, annotation will not be loaded. | |
filter_empty_gt (bool, optional): If set true, images without bounding | |
boxes of the dataset's classes will be filtered out. This option | |
only works when `test_mode=False`, i.e., we never filter images | |
during tests. | |
""" | |
CLASSES = None | |
def __init__(self, | |
ann_file, | |
pipeline, | |
classes=None, | |
data_root=None, | |
img_prefix='', | |
seg_prefix=None, | |
proposal_file=None, | |
test_mode=False, | |
filter_empty_gt=True): | |
self.ann_file = ann_file | |
self.data_root = data_root | |
self.img_prefix = img_prefix | |
self.seg_prefix = seg_prefix | |
self.proposal_file = proposal_file | |
self.test_mode = test_mode | |
self.filter_empty_gt = filter_empty_gt | |
self.CLASSES = self.get_classes(classes) | |
# join paths if data_root is specified | |
if self.data_root is not None: | |
if not osp.isabs(self.ann_file): | |
self.ann_file = osp.join(self.data_root, self.ann_file) | |
if not (self.img_prefix is None or osp.isabs(self.img_prefix)): | |
self.img_prefix = osp.join(self.data_root, self.img_prefix) | |
if not (self.seg_prefix is None or osp.isabs(self.seg_prefix)): | |
self.seg_prefix = osp.join(self.data_root, self.seg_prefix) | |
if not (self.proposal_file is None | |
or osp.isabs(self.proposal_file)): | |
self.proposal_file = osp.join(self.data_root, | |
self.proposal_file) | |
# load annotations (and proposals) | |
self.data_infos = self.load_annotations(self.ann_file) | |
if self.proposal_file is not None: | |
self.proposals = self.load_proposals(self.proposal_file) | |
else: | |
self.proposals = None | |
# filter images too small and containing no annotations | |
if not test_mode: | |
valid_inds = self._filter_imgs() | |
self.data_infos = [self.data_infos[i] for i in valid_inds] | |
if self.proposals is not None: | |
self.proposals = [self.proposals[i] for i in valid_inds] | |
# set group flag for the sampler | |
self._set_group_flag() | |
# processing pipeline | |
self.pipeline = Compose(pipeline) | |
def __len__(self): | |
"""Total number of samples of data.""" | |
return len(self.data_infos) | |
def load_annotations(self, ann_file): | |
"""Load annotation from annotation file.""" | |
return mmcv.load(ann_file) | |
def load_proposals(self, proposal_file): | |
"""Load proposal from proposal file.""" | |
return mmcv.load(proposal_file) | |
def get_ann_info(self, idx): | |
"""Get annotation by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Annotation info of specified index. | |
""" | |
return self.data_infos[idx]['ann'] | |
def get_cat_ids(self, idx): | |
"""Get category ids by index. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
list[int]: All categories in the image of specified index. | |
""" | |
return self.data_infos[idx]['ann']['labels'].astype(np.int).tolist() | |
def pre_pipeline(self, results): | |
"""Prepare results dict for pipeline.""" | |
results['img_prefix'] = self.img_prefix | |
results['seg_prefix'] = self.seg_prefix | |
results['proposal_file'] = self.proposal_file | |
results['bbox_fields'] = [] | |
results['mask_fields'] = [] | |
results['seg_fields'] = [] | |
def _filter_imgs(self, min_size=32): | |
"""Filter images too small.""" | |
if self.filter_empty_gt: | |
warnings.warn( | |
'CustomDataset does not support filtering empty gt images.') | |
valid_inds = [] | |
for i, img_info in enumerate(self.data_infos): | |
if min(img_info['width'], img_info['height']) >= min_size: | |
valid_inds.append(i) | |
return valid_inds | |
def _set_group_flag(self): | |
"""Set flag according to image aspect ratio. | |
Images with aspect ratio greater than 1 will be set as group 1, | |
otherwise group 0. | |
""" | |
self.flag = np.zeros(len(self), dtype=np.uint8) | |
for i in range(len(self)): | |
img_info = self.data_infos[i] | |
if img_info['width'] / img_info['height'] > 1: | |
self.flag[i] = 1 | |
def _rand_another(self, idx): | |
"""Get another random index from the same group as the given index.""" | |
pool = np.where(self.flag == self.flag[idx])[0] | |
return np.random.choice(pool) | |
def __getitem__(self, idx): | |
"""Get training/test data after pipeline. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Training/test data (with annotation if `test_mode` is set \ | |
True). | |
""" | |
if self.test_mode: | |
return self.prepare_test_img(idx) | |
while True: | |
data = self.prepare_train_img(idx) | |
if data is None: | |
idx = self._rand_another(idx) | |
continue | |
return data | |
def prepare_train_img(self, idx): | |
"""Get training data and annotations after pipeline. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Training data and annotation after pipeline with new keys \ | |
introduced by pipeline. | |
""" | |
img_info = self.data_infos[idx] | |
ann_info = self.get_ann_info(idx) | |
results = dict(img_info=img_info, ann_info=ann_info) | |
if self.proposals is not None: | |
results['proposals'] = self.proposals[idx] | |
self.pre_pipeline(results) | |
return self.pipeline(results) | |
def prepare_test_img(self, idx): | |
"""Get testing data after pipeline. | |
Args: | |
idx (int): Index of data. | |
Returns: | |
dict: Testing data after pipeline with new keys introduced by \ | |
pipeline. | |
""" | |
img_info = self.data_infos[idx] | |
results = dict(img_info=img_info) | |
if self.proposals is not None: | |
results['proposals'] = self.proposals[idx] | |
self.pre_pipeline(results) | |
return self.pipeline(results) | |
def get_classes(cls, classes=None): | |
"""Get class names of current dataset. | |
Args: | |
classes (Sequence[str] | str | None): If classes is None, use | |
default CLASSES defined by builtin dataset. If classes is a | |
string, take it as a file name. The file contains the name of | |
classes where each line contains one class name. If classes is | |
a tuple or list, override the CLASSES defined by the dataset. | |
Returns: | |
tuple[str] or list[str]: Names of categories of the dataset. | |
""" | |
if classes is None: | |
return cls.CLASSES | |
if isinstance(classes, str): | |
# take it as a file path | |
class_names = mmcv.list_from_file(classes) | |
elif isinstance(classes, (tuple, list)): | |
class_names = classes | |
else: | |
raise ValueError(f'Unsupported type {type(classes)} of classes.') | |
return class_names | |
def format_results(self, results, **kwargs): | |
"""Place holder to format result to dataset specific output.""" | |
def evaluate(self, | |
results, | |
metric='mAP', | |
logger=None, | |
proposal_nums=(100, 300, 1000), | |
iou_thr=0.5, | |
scale_ranges=None): | |
"""Evaluate the dataset. | |
Args: | |
results (list): Testing results of the dataset. | |
metric (str | list[str]): Metrics to be evaluated. | |
logger (logging.Logger | None | str): Logger used for printing | |
related information during evaluation. Default: None. | |
proposal_nums (Sequence[int]): Proposal number used for evaluating | |
recalls, such as recall@100, recall@1000. | |
Default: (100, 300, 1000). | |
iou_thr (float | list[float]): IoU threshold. Default: 0.5. | |
scale_ranges (list[tuple] | None): Scale ranges for evaluating mAP. | |
Default: None. | |
""" | |
if not isinstance(metric, str): | |
assert len(metric) == 1 | |
metric = metric[0] | |
allowed_metrics = ['mAP', 'recall'] | |
if metric not in allowed_metrics: | |
raise KeyError(f'metric {metric} is not supported') | |
annotations = [self.get_ann_info(i) for i in range(len(self))] | |
eval_results = OrderedDict() | |
iou_thrs = [iou_thr] if isinstance(iou_thr, float) else iou_thr | |
if metric == 'mAP': | |
assert isinstance(iou_thrs, list) | |
mean_aps = [] | |
for iou_thr in iou_thrs: | |
print_log(f'\n{"-" * 15}iou_thr: {iou_thr}{"-" * 15}') | |
mean_ap, _ = eval_map( | |
results, | |
annotations, | |
scale_ranges=scale_ranges, | |
iou_thr=iou_thr, | |
dataset=self.CLASSES, | |
logger=logger) | |
mean_aps.append(mean_ap) | |
eval_results[f'AP{int(iou_thr * 100):02d}'] = round(mean_ap, 3) | |
eval_results['mAP'] = sum(mean_aps) / len(mean_aps) | |
elif metric == 'recall': | |
gt_bboxes = [ann['bboxes'] for ann in annotations] | |
recalls = eval_recalls( | |
gt_bboxes, results, proposal_nums, iou_thr, logger=logger) | |
for i, num in enumerate(proposal_nums): | |
for j, iou in enumerate(iou_thrs): | |
eval_results[f'recall@{num}@{iou}'] = recalls[i, j] | |
if recalls.shape[1] > 1: | |
ar = recalls.mean(axis=1) | |
for i, num in enumerate(proposal_nums): | |
eval_results[f'AR@{num}'] = ar[i] | |
return eval_results | |