Robert001's picture
first commit
b334e29
raw
history blame
6.16 kB
import torch.nn as nn
import torch.nn.functional as F
from mmcv.cnn import ConvModule, caffe2_xavier_init
from mmcv.ops.merge_cells import ConcatCell
from ..builder import NECKS
@NECKS.register_module()
class NASFCOS_FPN(nn.Module):
"""FPN structure in NASFPN.
Implementation of paper `NAS-FCOS: Fast Neural Architecture Search for
Object Detection <https://arxiv.org/abs/1906.04423>`_
Args:
in_channels (List[int]): Number of input channels per scale.
out_channels (int): Number of output channels (used at each scale)
num_outs (int): Number of output scales.
start_level (int): Index of the start input backbone level used to
build the feature pyramid. Default: 0.
end_level (int): Index of the end input backbone level (exclusive) to
build the feature pyramid. Default: -1, which means the last level.
add_extra_convs (bool): It decides whether to add conv
layers on top of the original feature maps. Default to False.
If True, its actual mode is specified by `extra_convs_on_inputs`.
conv_cfg (dict): dictionary to construct and config conv layer.
norm_cfg (dict): dictionary to construct and config norm layer.
"""
def __init__(self,
in_channels,
out_channels,
num_outs,
start_level=1,
end_level=-1,
add_extra_convs=False,
conv_cfg=None,
norm_cfg=None):
super(NASFCOS_FPN, self).__init__()
assert isinstance(in_channels, list)
self.in_channels = in_channels
self.out_channels = out_channels
self.num_ins = len(in_channels)
self.num_outs = num_outs
self.norm_cfg = norm_cfg
self.conv_cfg = conv_cfg
if end_level == -1:
self.backbone_end_level = self.num_ins
assert num_outs >= self.num_ins - start_level
else:
self.backbone_end_level = end_level
assert end_level <= len(in_channels)
assert num_outs == end_level - start_level
self.start_level = start_level
self.end_level = end_level
self.add_extra_convs = add_extra_convs
self.adapt_convs = nn.ModuleList()
for i in range(self.start_level, self.backbone_end_level):
adapt_conv = ConvModule(
in_channels[i],
out_channels,
1,
stride=1,
padding=0,
bias=False,
norm_cfg=dict(type='BN'),
act_cfg=dict(type='ReLU', inplace=False))
self.adapt_convs.append(adapt_conv)
# C2 is omitted according to the paper
extra_levels = num_outs - self.backbone_end_level + self.start_level
def build_concat_cell(with_input1_conv, with_input2_conv):
cell_conv_cfg = dict(
kernel_size=1, padding=0, bias=False, groups=out_channels)
return ConcatCell(
in_channels=out_channels,
out_channels=out_channels,
with_out_conv=True,
out_conv_cfg=cell_conv_cfg,
out_norm_cfg=dict(type='BN'),
out_conv_order=('norm', 'act', 'conv'),
with_input1_conv=with_input1_conv,
with_input2_conv=with_input2_conv,
input_conv_cfg=conv_cfg,
input_norm_cfg=norm_cfg,
upsample_mode='nearest')
# Denote c3=f0, c4=f1, c5=f2 for convince
self.fpn = nn.ModuleDict()
self.fpn['c22_1'] = build_concat_cell(True, True)
self.fpn['c22_2'] = build_concat_cell(True, True)
self.fpn['c32'] = build_concat_cell(True, False)
self.fpn['c02'] = build_concat_cell(True, False)
self.fpn['c42'] = build_concat_cell(True, True)
self.fpn['c36'] = build_concat_cell(True, True)
self.fpn['c61'] = build_concat_cell(True, True) # f9
self.extra_downsamples = nn.ModuleList()
for i in range(extra_levels):
extra_act_cfg = None if i == 0 \
else dict(type='ReLU', inplace=False)
self.extra_downsamples.append(
ConvModule(
out_channels,
out_channels,
3,
stride=2,
padding=1,
act_cfg=extra_act_cfg,
order=('act', 'norm', 'conv')))
def forward(self, inputs):
"""Forward function."""
feats = [
adapt_conv(inputs[i + self.start_level])
for i, adapt_conv in enumerate(self.adapt_convs)
]
for (i, module_name) in enumerate(self.fpn):
idx_1, idx_2 = int(module_name[1]), int(module_name[2])
res = self.fpn[module_name](feats[idx_1], feats[idx_2])
feats.append(res)
ret = []
for (idx, input_idx) in zip([9, 8, 7], [1, 2, 3]): # add P3, P4, P5
feats1, feats2 = feats[idx], feats[5]
feats2_resize = F.interpolate(
feats2,
size=feats1.size()[2:],
mode='bilinear',
align_corners=False)
feats_sum = feats1 + feats2_resize
ret.append(
F.interpolate(
feats_sum,
size=inputs[input_idx].size()[2:],
mode='bilinear',
align_corners=False))
for submodule in self.extra_downsamples:
ret.append(submodule(ret[-1]))
return tuple(ret)
def init_weights(self):
"""Initialize the weights of module."""
for module in self.fpn.values():
if hasattr(module, 'conv_out'):
caffe2_xavier_init(module.out_conv.conv)
for modules in [
self.adapt_convs.modules(),
self.extra_downsamples.modules()
]:
for module in modules:
if isinstance(module, nn.Conv2d):
caffe2_xavier_init(module)