Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
# modified from | |
# https://github.com/Megvii-BaseDetection/cvpods/blob/master/cvpods/layers/border_align.py | |
import torch | |
import torch.nn as nn | |
from torch.autograd import Function | |
from torch.autograd.function import once_differentiable | |
from ..utils import ext_loader | |
ext_module = ext_loader.load_ext( | |
'_ext', ['border_align_forward', 'border_align_backward']) | |
class BorderAlignFunction(Function): | |
def symbolic(g, input, boxes, pool_size): | |
return g.op( | |
'mmcv::MMCVBorderAlign', input, boxes, pool_size_i=pool_size) | |
def forward(ctx, input, boxes, pool_size): | |
ctx.pool_size = pool_size | |
ctx.input_shape = input.size() | |
assert boxes.ndim == 3, 'boxes must be with shape [B, H*W, 4]' | |
assert boxes.size(2) == 4, \ | |
'the last dimension of boxes must be (x1, y1, x2, y2)' | |
assert input.size(1) % 4 == 0, \ | |
'the channel for input feature must be divisible by factor 4' | |
# [B, C//4, H*W, 4] | |
output_shape = (input.size(0), input.size(1) // 4, boxes.size(1), 4) | |
output = input.new_zeros(output_shape) | |
# `argmax_idx` only used for backward | |
argmax_idx = input.new_zeros(output_shape).to(torch.int) | |
ext_module.border_align_forward( | |
input, boxes, output, argmax_idx, pool_size=ctx.pool_size) | |
ctx.save_for_backward(boxes, argmax_idx) | |
return output | |
def backward(ctx, grad_output): | |
boxes, argmax_idx = ctx.saved_tensors | |
grad_input = grad_output.new_zeros(ctx.input_shape) | |
# complex head architecture may cause grad_output uncontiguous | |
grad_output = grad_output.contiguous() | |
ext_module.border_align_backward( | |
grad_output, | |
boxes, | |
argmax_idx, | |
grad_input, | |
pool_size=ctx.pool_size) | |
return grad_input, None, None | |
border_align = BorderAlignFunction.apply | |
class BorderAlign(nn.Module): | |
r"""Border align pooling layer. | |
Applies border_align over the input feature based on predicted bboxes. | |
The details were described in the paper | |
`BorderDet: Border Feature for Dense Object Detection | |
<https://arxiv.org/abs/2007.11056>`_. | |
For each border line (e.g. top, left, bottom or right) of each box, | |
border_align does the following: | |
1. uniformly samples `pool_size`+1 positions on this line, involving \ | |
the start and end points. | |
2. the corresponding features on these points are computed by \ | |
bilinear interpolation. | |
3. max pooling over all the `pool_size`+1 positions are used for \ | |
computing pooled feature. | |
Args: | |
pool_size (int): number of positions sampled over the boxes' borders | |
(e.g. top, bottom, left, right). | |
""" | |
def __init__(self, pool_size): | |
super(BorderAlign, self).__init__() | |
self.pool_size = pool_size | |
def forward(self, input, boxes): | |
""" | |
Args: | |
input: Features with shape [N,4C,H,W]. Channels ranged in [0,C), | |
[C,2C), [2C,3C), [3C,4C) represent the top, left, bottom, | |
right features respectively. | |
boxes: Boxes with shape [N,H*W,4]. Coordinate format (x1,y1,x2,y2). | |
Returns: | |
Tensor: Pooled features with shape [N,C,H*W,4]. The order is | |
(top,left,bottom,right) for the last dimension. | |
""" | |
return border_align(input, boxes, self.pool_size) | |
def __repr__(self): | |
s = self.__class__.__name__ | |
s += f'(pool_size={self.pool_size})' | |
return s | |