Spaces:
Runtime error
Runtime error
# Copyright (c) OpenMMLab. All rights reserved. | |
import warnings | |
import torch.nn as nn | |
from annotator.uniformer.mmcv.utils import _BatchNorm, _InstanceNorm | |
from ..utils import constant_init, kaiming_init | |
from .activation import build_activation_layer | |
from .conv import build_conv_layer | |
from .norm import build_norm_layer | |
from .padding import build_padding_layer | |
from .registry import PLUGIN_LAYERS | |
class ConvModule(nn.Module): | |
"""A conv block that bundles conv/norm/activation layers. | |
This block simplifies the usage of convolution layers, which are commonly | |
used with a norm layer (e.g., BatchNorm) and activation layer (e.g., ReLU). | |
It is based upon three build methods: `build_conv_layer()`, | |
`build_norm_layer()` and `build_activation_layer()`. | |
Besides, we add some additional features in this module. | |
1. Automatically set `bias` of the conv layer. | |
2. Spectral norm is supported. | |
3. More padding modes are supported. Before PyTorch 1.5, nn.Conv2d only | |
supports zero and circular padding, and we add "reflect" padding mode. | |
Args: | |
in_channels (int): Number of channels in the input feature map. | |
Same as that in ``nn._ConvNd``. | |
out_channels (int): Number of channels produced by the convolution. | |
Same as that in ``nn._ConvNd``. | |
kernel_size (int | tuple[int]): Size of the convolving kernel. | |
Same as that in ``nn._ConvNd``. | |
stride (int | tuple[int]): Stride of the convolution. | |
Same as that in ``nn._ConvNd``. | |
padding (int | tuple[int]): Zero-padding added to both sides of | |
the input. Same as that in ``nn._ConvNd``. | |
dilation (int | tuple[int]): Spacing between kernel elements. | |
Same as that in ``nn._ConvNd``. | |
groups (int): Number of blocked connections from input channels to | |
output channels. Same as that in ``nn._ConvNd``. | |
bias (bool | str): If specified as `auto`, it will be decided by the | |
norm_cfg. Bias will be set as True if `norm_cfg` is None, otherwise | |
False. Default: "auto". | |
conv_cfg (dict): Config dict for convolution layer. Default: None, | |
which means using conv2d. | |
norm_cfg (dict): Config dict for normalization layer. Default: None. | |
act_cfg (dict): Config dict for activation layer. | |
Default: dict(type='ReLU'). | |
inplace (bool): Whether to use inplace mode for activation. | |
Default: True. | |
with_spectral_norm (bool): Whether use spectral norm in conv module. | |
Default: False. | |
padding_mode (str): If the `padding_mode` has not been supported by | |
current `Conv2d` in PyTorch, we will use our own padding layer | |
instead. Currently, we support ['zeros', 'circular'] with official | |
implementation and ['reflect'] with our own implementation. | |
Default: 'zeros'. | |
order (tuple[str]): The order of conv/norm/activation layers. It is a | |
sequence of "conv", "norm" and "act". Common examples are | |
("conv", "norm", "act") and ("act", "conv", "norm"). | |
Default: ('conv', 'norm', 'act'). | |
""" | |
_abbr_ = 'conv_block' | |
def __init__(self, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=1, | |
padding=0, | |
dilation=1, | |
groups=1, | |
bias='auto', | |
conv_cfg=None, | |
norm_cfg=None, | |
act_cfg=dict(type='ReLU'), | |
inplace=True, | |
with_spectral_norm=False, | |
padding_mode='zeros', | |
order=('conv', 'norm', 'act')): | |
super(ConvModule, self).__init__() | |
assert conv_cfg is None or isinstance(conv_cfg, dict) | |
assert norm_cfg is None or isinstance(norm_cfg, dict) | |
assert act_cfg is None or isinstance(act_cfg, dict) | |
official_padding_mode = ['zeros', 'circular'] | |
self.conv_cfg = conv_cfg | |
self.norm_cfg = norm_cfg | |
self.act_cfg = act_cfg | |
self.inplace = inplace | |
self.with_spectral_norm = with_spectral_norm | |
self.with_explicit_padding = padding_mode not in official_padding_mode | |
self.order = order | |
assert isinstance(self.order, tuple) and len(self.order) == 3 | |
assert set(order) == set(['conv', 'norm', 'act']) | |
self.with_norm = norm_cfg is not None | |
self.with_activation = act_cfg is not None | |
# if the conv layer is before a norm layer, bias is unnecessary. | |
if bias == 'auto': | |
bias = not self.with_norm | |
self.with_bias = bias | |
if self.with_explicit_padding: | |
pad_cfg = dict(type=padding_mode) | |
self.padding_layer = build_padding_layer(pad_cfg, padding) | |
# reset padding to 0 for conv module | |
conv_padding = 0 if self.with_explicit_padding else padding | |
# build convolution layer | |
self.conv = build_conv_layer( | |
conv_cfg, | |
in_channels, | |
out_channels, | |
kernel_size, | |
stride=stride, | |
padding=conv_padding, | |
dilation=dilation, | |
groups=groups, | |
bias=bias) | |
# export the attributes of self.conv to a higher level for convenience | |
self.in_channels = self.conv.in_channels | |
self.out_channels = self.conv.out_channels | |
self.kernel_size = self.conv.kernel_size | |
self.stride = self.conv.stride | |
self.padding = padding | |
self.dilation = self.conv.dilation | |
self.transposed = self.conv.transposed | |
self.output_padding = self.conv.output_padding | |
self.groups = self.conv.groups | |
if self.with_spectral_norm: | |
self.conv = nn.utils.spectral_norm(self.conv) | |
# build normalization layers | |
if self.with_norm: | |
# norm layer is after conv layer | |
if order.index('norm') > order.index('conv'): | |
norm_channels = out_channels | |
else: | |
norm_channels = in_channels | |
self.norm_name, norm = build_norm_layer(norm_cfg, norm_channels) | |
self.add_module(self.norm_name, norm) | |
if self.with_bias: | |
if isinstance(norm, (_BatchNorm, _InstanceNorm)): | |
warnings.warn( | |
'Unnecessary conv bias before batch/instance norm') | |
else: | |
self.norm_name = None | |
# build activation layer | |
if self.with_activation: | |
act_cfg_ = act_cfg.copy() | |
# nn.Tanh has no 'inplace' argument | |
if act_cfg_['type'] not in [ | |
'Tanh', 'PReLU', 'Sigmoid', 'HSigmoid', 'Swish' | |
]: | |
act_cfg_.setdefault('inplace', inplace) | |
self.activate = build_activation_layer(act_cfg_) | |
# Use msra init by default | |
self.init_weights() | |
def norm(self): | |
if self.norm_name: | |
return getattr(self, self.norm_name) | |
else: | |
return None | |
def init_weights(self): | |
# 1. It is mainly for customized conv layers with their own | |
# initialization manners by calling their own ``init_weights()``, | |
# and we do not want ConvModule to override the initialization. | |
# 2. For customized conv layers without their own initialization | |
# manners (that is, they don't have their own ``init_weights()``) | |
# and PyTorch's conv layers, they will be initialized by | |
# this method with default ``kaiming_init``. | |
# Note: For PyTorch's conv layers, they will be overwritten by our | |
# initialization implementation using default ``kaiming_init``. | |
if not hasattr(self.conv, 'init_weights'): | |
if self.with_activation and self.act_cfg['type'] == 'LeakyReLU': | |
nonlinearity = 'leaky_relu' | |
a = self.act_cfg.get('negative_slope', 0.01) | |
else: | |
nonlinearity = 'relu' | |
a = 0 | |
kaiming_init(self.conv, a=a, nonlinearity=nonlinearity) | |
if self.with_norm: | |
constant_init(self.norm, 1, bias=0) | |
def forward(self, x, activate=True, norm=True): | |
for layer in self.order: | |
if layer == 'conv': | |
if self.with_explicit_padding: | |
x = self.padding_layer(x) | |
x = self.conv(x) | |
elif layer == 'norm' and norm and self.with_norm: | |
x = self.norm(x) | |
elif layer == 'act' and activate and self.with_activation: | |
x = self.activate(x) | |
return x | |